Exposure to relatively high levels of trichloroethylene has recently been shown to accelerate the development of an autoimmune response in the autoimmune prone MRL+/+ mice. The trichloroethylene-induced autoimmune response was associated with an increase in activated CD4(+) T cells, producing Th(1)-like cytokines. The present study was conducted to determine whether lower, more occupationally relevant doses of trichloroethylene could also promote autoimmunity, in MRL+/+ mice, and if so, to investigate the mechanism of this accelerated autoimmune response. In addition, histological studies were performed to determine if trichloroethylene was capable of producing pathological markers consistent with an autoimmune disease. Trichloroethylene was administered to mice in the drinking water at 0, 0.1, 0.5, and 2.5 mg/ml for 4 and 32 weeks. There was a significant increase above controls in serum antinuclear antibody (ANA) levels following 4 weeks of both 0.1 and 0.5 mg/kg/day of trichloroethylene. After 32 weeks of treatment, ANA levels were elevated and equal in all groups. The kinetics of the ANA response indicated that trichloroethylene accelerated the innate autoimmune response in the MRL+/+ mice. There was a dose-related increase in the percentage of activated CD4(+) T cells in both the spleens and lymph nodes of mice treated for 32 weeks with trichloroethylene when compared to controls. CD4(+) T cells isolated from MRL+/+ mice after either 4 or 32 weeks of treatment with trichloroethylene secreted inflammatory or Th(1)-like cytokines. Following 32 weeks of trichloroethylene treatment, there was a significant increase in hepatic mononuclear infiltration localized to the portal region, a type of hepatic infiltration consistent with autoimmune hepatitis. Taken collectively, these data suggest that exposure to occupationally relevant concentrations of trichloroethylene can accelerate an autoimmune response and can lead to autoimmune disease. The mechanism of this autoimmunity appears to involve, at least in part, activated CD4(+) T cells that then produced inflammatory cytokines.
ObjectivesIn this review we summarize research on mechanisms through which environmental agents may affect the pathogenesis of lupus, discuss three exposures that have been the focus of research in this area, and propose recommendations for new research initiatives.Data sources and synthesisWe examined studies pertaining to key mechanistic events and specific exposures. Apoptosis leading to increased production or decreased clearance of immunogenic intracellular self-antigens and defective apoptosis of autoreactive immune cells both have been implicated in the loss of self-tolerance. The adjuvant or bystander effect is also needed to produce a sustained autoimmune response. Activation of toll-like receptors is one mechanism through which these effects may occur. Abnormal DNA methylation may also contribute to the pathogenesis of lupus. Each of the specific exposures we examined—Epstein-Barr virus, silica, and trichloroethylene—has been shown, in humans or in mice, to act upon one or more of these pathogenic steps. Specific recommendations for the continued advancement of our understanding of environmental influences on lupus and other autoimmune diseases include the development and use of mouse models with varying degrees of penetrance and manifestations of disease, identification of molecular or physiologic targets of specific exposures, development and use of improved exposure assessment methodologies, and multisite collaborations designed to examine understudied environmental exposures in humans.ConclusionsThe advances made in the past decade concerning our understanding of mechanisms involved in the development of lupus and the influence of environmental agents on this process provide a strong foundation for further developments in this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.