Mutations in the canonical transient receptor potential cation channel 6 (TRPC6) are responsible for familial forms of adult onset focal segmental glomerulosclerosis (FSGS). The mechanisms by which TRPC6 mutations cause kidney disease are not well understood. We used TRPC6-deficient mice to examine the function of TRPC6 in the kidney. We found that adult TRPC6-deficient mice had BP and albumin excretion rates similar to wild-type animals. Glomerular histomorphology revealed no abnormalities on both light and electron microscopy. To determine whether the absence of TRPC6 would alter susceptibility to hypertension and renal injury, we infused mice with angiotensin II continuously for 28 days. Although both groups developed similar levels of hypertension, TRPC6-deficient mice had significantly less albuminuria, especially during the early phase of the infusion; this suggested that TRPC6 adversely influences the glomerular filter. We used whole-cell patch-clamp recording to measure cellmembrane currents in primary cultures of podocytes from both wild-type and TRPC6-deficient mice. In podocytes from wild-type mice, angiotensin II and a direct activator of TRPC6 both augmented cellmembrane currents; TRPC6 deficiency abrogated these increases in current magnitude. Our findings suggest that TRPC6 promotes albuminuria, perhaps by promoting angiotensin II-dependent increases in Ca 2ϩ , suggesting that TRPC6 blockade may be therapeutically beneficial in proteinuric kidney disease. The transient receptor potential (TRP) ion channel family is a diverse group of cation channels identified by a common primary structure with six membrane-spanning domains and intracellular carboxy and amino termini. Within the larger group of TRP channels, the TRPC family is characterized by three or four amino-terminal ankyrin repeats and a highly conserved TRP domain. Within the TRPC family, TRPC6 is 75% homologous at the amino acid level with TRPC3 and TRPC7, and all three are activated by diacylglycerol. They are believed to associate as heterotrimers to form functional ion channels on the cell surface. 1 A role for TRPC6 in the kidney was revealed by studies showing that mutations in the TRPC6 gene cause autosomal dominant forms of hereditary focal segmental glomerulosclerosis (FSGS) that are particularly aggressive. We originally reported that patients with the TRPC6 P112Q mutation developed high-grade proteinuria by the third or fourth decade of life, and 60% progressed to ESRD. 2 We also found augmented intracellular calcium (Ca 2ϩ ) influx with TRPC6 P112Q compared with wild-type
FSGS is a clinical disorder characterized by focal scarring of the glomerular capillary tuft, podocyte injury, and nephrotic syndrome. Although idiopathic forms of FSGS predominate, recent insights into the molecular and genetic causes of FSGS have enhanced our understanding of disease pathogenesis. Here, we report a novel missense mutation of the transcriptional regulator Wilms' Tumor 1 (WT1) as the cause of nonsyndromic, autosomal dominant FSGS in two Northern European kindreds from the United States. We performed sequential genome-wide linkage analysis and whole-exome sequencing to evaluate participants from family DUK6524. Subsequently, whole-exome sequencing and direct sequencing were performed on proband DNA from family DUK6975. We identified multiple suggestive loci on chromosomes 6, 11, and 13 in family DUK6524 and identified a segregating missense mutation (R458Q) in WT1 isoform D as the cause of FSGS in this family. The identical mutation was found in family DUK6975. The R458Q mutation was not found in 1600 control chromosomes and was predicted as damaging by in silico simulation. We depleted wt1a in zebrafish embryos and observed glomerular injury and filtration defects, both of which were rescued with wild-type but not mutant human WT1D mRNA. Finally, we explored the subcellular mechanism of the mutation in vitro. WT1 R458Q overexpression significantly downregulated nephrin and synaptopodin expression, promoted apoptosis in HEK293 cells and impaired focal contact formation in podocytes. Taken together, these data suggest that the WT1 R458Q mutation alters the regulation of podocyte homeostasis and causes nonsyndromic FSGS.
Chemotherapy-induced cell death is linked to apoptosis, and there is increasing evidence that multidrug-resistance in cancer cells may be the result of a decrease in the ability of a cell to initiate apoptosis in response to cytotoxic agents. In previous studies, we synthesized two classes of electrophilic tocopheryl quinones (TQ), nonarylating alpha-TQ and arylating gamma- and delta-TQ, and found that gamma- and delta-TQ, but not alpha-TQ, were highly cytotoxic in human acute lymphoblastic leukemia cells (CEM) and multidrug-resistant (MDR) CEM/VLB100. We have now extended these studies on tumor biology with CEM, HL60 and MDR HL60/MX2 human promyelocytic leukemia, U937 human monocytic leukemia, and ZR-75-1 breast adenocarcinoma cells. gamma-TQ, but not alpha-TQ or tocopherols, showed concentration and incubation time-dependent effects on loss of plasma membrane integrity, diminished viable cell number, and stimulation of apoptosis. Its cytotoxicity exceeded that of doxorubicin in HL60/MX2 cells, which express MRP, an MDR-associated protein. Apoptosis was confirmed by TEM, TUNEL, and DNA gel electrophoresis. Kinetic studies showed that an induction period was required to initiate an irreversible multiphase process. Gamma-TQ released mitochondrial cytochrome c to the cytosol, induced the cleavage of poly(ADP-ribose)polymerase, and depleted intracellular glutathione. Unlike xenobiotic electrophiles, gamma-TQ is a highly cytotoxic arylating electrophile that stimulates apoptosis in several cancer cell lines including cells that express MDR through both P-glycoprotein and MRP-associated proteins. The biological properties of arylating TQ electrophiles are closely associated with cytotoxicity and may contribute to other biological effects of these highly active agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.