We are performing a uniform and unbiased imaging survey of the Large Magellanic Cloud (LMC; $7 ; 7) using the IRAC (3.6, 4.5, 5.8, and 8 m) and MIPS (24, 70, and 160 m) instruments on board the Spitzer Space Telescope in the Surveying the Agents of a Galaxy's Evolution (SAGE) survey, these agents being the interstellar medium (ISM) and stars in the LMC. This paper provides an overview of the SAGE Legacy project, including observing strategy, data processing, and initial results. Three key science goals determined the coverage and depth of the survey. The detection of diffuse ISM with column densities >1:2 ; 10 21 H cm À2 permits detailed studies of dust processes in the ISM. SAGE's point-source sensitivity enables a complete census of newly formed stars with masses >3 M that will determine the current star formation rate in the LMC. SAGE's detection of evolved stars with mass-loss rates >1 ; 10 À8 M yr À1 will quantify the rate at which evolved stars inject mass into the ISM of the LMC. The observing strategy includes two epochs in 2005, separated by 3 months, that both mitigate instrumental artifacts and constrain source variability. The SAGE data are nonproprietary. The data processing includes IRAC and MIPS pipelines and a database for mining the point-source catalogs, which will be released to the community in support of Spitzer proposal cycles 4 and 5. We present initial results on the epoch 1 data for a region near N79 and N83. The MIPS 70 and 160 m images of the diffuse dust emission of the N79/N83 region reveal a similar distribution to the gas emissions, especially the H i 21 cm emission. The measured point-source sensitivity for the epoch 1 data is consistent with expectations for the survey. The point-source counts are highest for the IRAC 3.6 m band and decrease dramatically toward longer wavelengths, A
The ACS Nearby Galaxy Survey Treasury (ANGST) is a systematic survey to establish a legacy of uniform multi-color photometry of resolved stars for a volume-limited sample of nearby galaxies (D < 4 Mpc). The survey volume encompasses 69 galaxies in diverse environments, including close pairs, small & large groups, filaments, and truly isolated regions. The galaxies include a nearly complete range of morphological types spanning a factor of ∼ 10 4 in luminosity and star formation rate. The survey data consists of images taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST), supplemented with archival data and new Wide Field Planetary Camera (WFPC2) imaging taken after the failure of ACS. Survey images include wide field tilings covering the full radial extent of each galaxy, and single deep pointings in uncrowded regions of the most massive galaxies in the volume. The new wide field imaging in ANGST reaches median 50% completenesses of m F 475W = 28.0 mag, m F 606W = 27.3 mag, and m F 814W = 27.3 mag, several magnitudes below the tip of the red giant branch (TRGB). The deep fields reach magnitudes sufficient to fully resolve the structure in the red clump (RC). The resulting photometric catalogs are publicly accessible and contain over 34 million photometric measurements of >14 million stars. In this paper we present the details of the sample selection, imaging, data reduction, and the resulting photometric catalogs, along with an analysis of the photometric uncertainties (systematic and random), for both the ACS and WFPC2 imaging. We also present uniformly derived relative distances measured from the apparent magnitude of the TRGB.
We present the first-ever global, spatially-resolved reconstruction of the star formation history (SFH) of the Large Magellanic Cloud (LMC), based on the application of our StarFISH analysis software to the multiband photometry of twenty million of its stars from the Magellanic Clouds Photometric Survey. The general outlines of our results are consistent with previously published results: following an initial burst of star formation, there was a quiescent epoch from approximately 12 to 5 Gyr ago. Star formation then resumed and has proceeded until the current time at an average rate of roughly 0.2 M ⊙ yr −1 , with temporal variations at the factor-of-two level. The re-ignition of star formation about 5 Gyr ago, in both the LMC and SMC, is suggestive of a dramatic event at that time in the Magellanic system. Among the global variations in the recent star formation rate are peaks at roughly 2 Gyr, 500 Myr, 100 Myr and 12 Myr. The peaks at 500 Myr and 2 Gyr are nearly coincident with similar peaks in the SFH of the Small Magellanic Cloud, suggesting a joint history for these galaxies extending back at least several Gyr. The chemical enrichment history recovered from our StarFISH analysis is in broad agreement with that inferred from the LMC's star cluster population, although our constraints on the ancient chemical enrichment history are weak. We conclude from the concordance between the star formation and chemical enrichment histories of the field and cluster populations that the field and cluster star formation modes are tightly coupled.
We present the spatially resolved star formation and chemical enrichment history of the Small Magellanic Cloud (SMC) across the entire central 4 Â 4:5 area of the main body, based on UBVI photometry from our Magellanic Clouds Photometric Survey. We find that (1) approximately 50% of the stars that ever formed in the SMC formed prior to 8.4 Gyr ago (z > 1:2 for WMAP cosmology); (2) the SMC formed relatively few stars between 8.4 and 3 Gyr ago; (3) there was a rise in the mean star formation rate during the most recent 3 Gyr punctuated by ''bursts'' at ages of 2.5, 0.4, and 0.06 Gyr; (4) the bursts at 2.5 and 0.4 Gyr are temporally coincident with past perigalactic passages of the SMC with the Milky Way; (5) there is preliminary evidence for a large-scale annular structure in the 2.5 Gyr burst; and (6) the chemical enrichment history derived from our analysis is in agreement with the age-metallicity relation of the SMC's star clusters. Consistent interpretation of the data required an ad hoc correction of 0.1-0.2 mag to the BÀV colors of 25% of the stars; the cause of this anomaly is unknown, but we show that it does not strongly influence our results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.