BACKGROUND:The European Centre for the Validation of Alternative Methods (ECVAM) designed the Embryonic Stem Cell Test (EST) as a tool for classifying developmentally toxic compounds. An in vitro tool to assess developmental toxicity would be of great value to the pharmaceutical industry to help with toxicity-associated attrition. METHODS: ECVAM's EST protocol was used, but employing a different mouse embryonic stem cell (ESC) line and an alternative differentiation medium. A subset of the compounds used to validate the EST assay along with a number of in-house pharmaceutical compounds plus marketed pharmaceutical compounds were used to assess the EST performance with receptor-mediated compounds. RESULTS: Our results with ECVAM compounds mirrored ECVAM's. Compounds that were developmentally toxic in vivo were classified by the EST as moderate risk. Overall, the accuracy was 75% with the current set of data and the predictivity of low-, moderate-, and high-risk compounds was 90, 71, and 60% while the precision was 59, 86, and 100%, respectively. Interestingly, a number of the non-developmentally toxic compounds had values for the 3T3 IC 50 values, which were lower than the ESC IC 50 and ID 50, a situation not taken into account by ECVAM when designing the EST algorithm. CONCLUSIONS: The assay as currently constructed has a significant falsepositive rate (B40%), but a very low false-negative rate (B7%). Additional moderate-and high-risk compounds need to be assessed to increase confidence, accuracy, and understanding in the EST's predictivity. Birth Defects Res (Part B) 83: 104-111, 2008.
PurposeCorneal endothelial cells (CECs) are critical in maintaining clarity of the cornea. This study was initiated to develop peripheral blood mononuclear cell (PBMC)-originated, induced pluripotent stem cell (iPSC)-derived CECs.MethodsWe isolated PBMCs and programmed the mononuclear cells to generate iPSCs, which were differentiated to CECs through the neural crest cells (NCCs). The morphology of differentiating iPSCs was examined at regular intervals by phase contrast microscopy. In parallel, the expression of pluripotent and corneal endothelium (CE)-associated markers was investigated by quantitative real-time PCR (qRT-PCR). The molecular architecture of the iPSC-derived CECs and human corneal endothelium (hCE) was examined by mass spectrometry–based proteome sequencing.ResultsThe PBMC-originated, iPSC-derived CECs were tightly adherent, exhibiting a hexagonal-like shape, one of the cardinal characteristics of CECs. The CE-associated markers expressed at significantly higher levels in iPSC-derived CECs at days 13, 20, and 30 compared with their respective levels in iPSCs. It is of importance that only residual expression levels of pluripotency markers were detected in iPSC-derived CECs. Cryopreservation of iPSC-derived CECs did not affect the tight adherence of CECs and their hexagonal-like shape while expressing high levels of CE-associated markers. Mass spectrometry–based proteome sequencing identified 10,575 proteins in the iPSC-derived CEC proteome. In parallel, we completed proteome profiling of the hCE identifying 6345 proteins. Of these, 5763 proteins were identified in the iPSC-derived CECs, suggesting that 90.82% of the hCE proteome overlaps with the iPSC-derived CEC proteome.ConclusionsWe have successfully developed a personalized approach to generate CECs that closely mimic the molecular architecture of the hCE. To the best of our knowledge, this is the first report describing the development of PBMC-originated, iPSC-derived CECs.
The ultrasound biomicroscope is an effective tool for the real-time characterization of the structure and function of embryo/fetal rat hearts. DMO causes significant deficits to in utero heart function for up to ten days (GD 21) following its final administration, suggesting long-term or possible permanent changes cardiac function.
The ocular lens serves as an excellent system to investigate the intricate details of development and differentiation. Generation of lentoid bodies or lens-like structures using pluripotent stem cells is important for understanding the processes critical for lens morphogenesis and the mechanism of cataractogenesis. We previously reported the generation of peripheral blood mononuclear cell (PBMC)-originated, induced pluripotent stem cells (iPSCs). Here, we report generation of lentoid bodies from human embryonic stem cells (hESCs) and (PBMC)-originated, iPSCs employing the “fried egg” method with brief modifications. The ultrastructure analysis of hESC- and iPSC-derived lentoid bodies identified closely packed lens epithelial- and differentiating fiber-like cells. In addition, we performed RNA sequencing (RNA-Seq) based transcriptome profiling of hESC- and iPSC-derived lentoid bodies at differentiation day 25. Next-generation RNA sequencing (RNA-Seq) of hESC- and iPSC-derived lentoid bodies detected expression (≥0.659 RPKM) of 13,975 and 14,003 genes, respectively. Comparative transcriptome analysis of hESC- and iPSC-derived lentoid bodies revealed 13,563 (>96%) genes common in both datasets. Among the genes common in both transcriptome datasets, 12,856 (~95%) exhibited a quantitatively similar expression profile. Next, we compared the mouse lens epithelial and fiber cell transcriptomes with hESC- and iPSC-derived lentoid bodies transcriptomes and identified > 96% overlap with lentoid body transcriptomes. In conclusion, we report first-time comparative transcriptome analysis of hESC- and iPSC-derived lentoid bodies at differentiation day 25.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.