BackgroundThe engineering of many-component, synthetic biological systems is being made easier by the development of collections of reusable, standard biological parts. However, the complexity of biology makes it difficult to predict the extent to which such efforts will succeed. As a first practical example, the Registry of Standard Biological Parts started at MIT now maintains and distributes thousands of BioBrick™ standard biological parts. However, BioBrick parts are only standardized in terms of how individual parts are physically assembled into multi-component systems, and most parts remain uncharacterized. Standardized tools, techniques, and units of measurement are needed to facilitate the characterization and reuse of parts by independent researchers across many laboratories.ResultsWe found that the absolute activity of BioBrick promoters varies across experimental conditions and measurement instruments. We choose one promoter (BBa_J23101) to serve as an in vivo reference standard for promoter activity. We demonstrated that, by measuring the activity of promoters relative to BBa_J23101, we could reduce variation in reported promoter activity due to differences in test conditions and measurement instruments by ~50%. We defined a Relative Promoter Unit (RPU) in order to report promoter characterization data in compatible units and developed a measurement kit so that researchers might more easily adopt RPU as a standard unit for reporting promoter activity. We distributed a set of test promoters to multiple labs and found good agreement in the reported relative activities of promoters so measured. We also characterized the relative activities of a reference collection of BioBrick promoters in order to further support adoption of RPU-based measurement standards.ConclusionRelative activity measurements based on an in vivoreference standard enables improved measurement of promoter activity given variation in measurement conditions and instruments. These improvements are sufficient to begin to support the measurement of promoter activities across many laboratories. Additional in vivo reference standards for other types of biological functions would seem likely to have similar utility, and could thus improve research on the design, production, and reuse of standard biological parts.
Biological signaling networks process extracellular cues to control important cell decisions such as death-survival, growth-quiescence, and proliferation-differentiation. After receptor activation, intracellular signaling proteins change in abundance, modification state, and enzymatic activity. Many of the proteins in signaling networks have been identified, but it is not known how signaling molecules work together to control cell decisions. To begin to address this issue, we report the use of partial least squares regression as an analytical method to glean signal-response relationships from heterogeneous multivariate signaling data collected from HT-29 human colon carcinoma cells stimulated to undergo programmed cell death. By partial least squares modeling, we relate dynamic and quantitative measurements of 20-30 intracellular signals to cell survival after treatment with tumor necrosis factor alpha (a death factor) and insulin (a survival factor). We find that partial least squares models can distinguish highly informative signals from redundant uninformative signals to generate a reduced model that retains key signaling features and signal-response relationships. In these models, measurements of biochemical characteristics, based on very different techniques (Western blots, kinase assays, etc.), are grouped together as covariates, showing that heterogenous data have been effectively fused. Importantly, informative protein predictors of cell responses are always multivariate, demonstrating the multicomponent nature of the decision process.
Background: Experimental studies of gene expression have identified some of the individual molecular components and elementary reactions that comprise and control cellular behavior. Given our current understanding of gene expression, and the goals of biotechnology research, both scientists and engineers would benefit from detailed simulators that can explicitly compute genome-wide expression levels as a function of individual molecular events, including the activities and interactions of molecules on DNA at single base pair resolution. However, for practical reasons including computational tractability, available simulators have not been able to represent genome-scale models of gene expression at this level of detail.
A new industry model is emerging where microbes are first developed by specialist organism engineering firms and then deployed by customers in specific application areas. It is now realistic for companies without prior fermentation experience to purchase and deploy an engineered organism to expand their business.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.