We used an individual‐based population model to perform a viability analysis to simulate population growth (λ) of 167 elk (Cervus elaphus manitobensis; 71 male and 96 female) released in the Cumberland Mountains, Tennessee, to estimate sustainability (i.e., λ > 1.0) and identify the most appropriate options for managing elk restoration. We transported elk from Elk Island National Park, Alberta, Canada, and from Land Between the Lakes, Kentucky, and reintroduced them beginning in December 2000 and ending in February 2003. We estimated annual survival rates for 156 radio‐collared elk from December 2000 until November 2004. We used data from a nearby elk herd in Great Smoky Mountains National Park to simulate pessimistic and optimistic recruitment and performed population viability analyses to evaluate sustainability over a 25‐year period. Annual survival averaged 0.799 (Total SE = 0.023). The primary identifiable sources of mortality were poaching, disease from meningeal worm (Parelaphostrongylus tenuis), and accidents (environmental causes and unintentional harvest). Population growth given pessimistic recruitment rates averaged 0.895 over 25 years (0.955 in year 1 to 0.880 in year 25); population growth was not sustainable in 100% of the runs. With the most optimistic estimates of recruitment, mean λ increased to 0.967 (1.038 in year 1 to 0.956 in year 25) with 99.6% of the runs failing to be sustainable. We suggest that further translocation efforts to increase herd size will be ineffective unless survival rates are increased in the Cumberland Mountains. © 2011 The Wildlife Society.
Elk (Cervus canadensis) translocation success is thought to be facilitated by high post‐release herd cohesion and limited movements; both should ensure genetic mixing following release. Such mixing is important to reduce potential effects of inbreeding or genetic drift, which can be especially important in small founding populations. We had a natural experiment where we could evaluate genetic mixing of 2 distinct lineages of elk after translocation to the same area. Founding elk ultimately came from north and south of a road barrier at Elk Island National Park (EINPN or EINPS, respectively), Alberta, Canada and the 2 groups were genetically distinct. During 2000 to 2003, elk originating from Elk Island National Park were translocated to Cumberland Mountains, Tennessee (TNCM) and Great Smoky Mountains National Park, North Carolina (GSMNP), USA (some elk spent time at Land Between the Lakes Recreation Area, Kentucky, USA, before their final translocation). At TNCM, translocated elk were hard released, whereas at GSMNP elk were held in pens up to 60 days before release (i.e., soft release). We hypothesized that associations formed in the source population would affect genetic structure in the future population. We predicted that matrilineal groups would stay closer together and have similar movements after translocation. We used 16 microsatellite markers to analyze genetic composition and structure of translocated elk and their offspring in the years after release. Most source elk used for translocation strongly assigned to either EINPN or EINPS (93.2%, n = 204). Evaluating the genetic structure of offspring after translocation, we found the 2 genetic groups mostly persisted ≥11 years following release. We measured the Euclidean distance between all possible pairs of telemetered female elk during each season and year and calculated the maximum distance moved from the release sites for females surviving >1 year. Mean Euclidean distances between pairwise locations of female elk were similar for each genetic cluster for each area. The mean distances for all paired locations (genetic clusters combined) in TNCM were 14.67 km (n = 4,576 ± 13.23 [SD]) and in GSMNP were 9.30 km (n = 1,468 ± 9.75). However, when looking at only simultaneous locations <50 m apart, the frequency of occurrence was higher (P < 0.001) for elk with the same genetic structure (71.1%) compared with those with different structure (28.9%). The maximum distance travelled from the release site was not different for the 2 genetic groups, but EINPN females tended to travel farther. Pairwise female distances were lower in GSMNP where we used a soft release. Release methodology and social structure appear to affect movements and possibly genetic mixing after translocation. Given that restoration success can depend on maintaining genetic diversity and number of founders, our analyses suggest that within‐cluster breeding bias can result in lower genetic variability and a smaller effective population size than previously assumed. © 2018 The Wildlife S...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.