Vesicle fusion and recycling are particularly critical for ongoing neurotransmitter release in the small nerve terminals of the brain, which typically contain about 30 functional vesicles. However, the modes of exocytosis and endocytosis that operate at synapses of the central nervous system are incompletely understood. Here we show real-time visualization of a single vesicle fusing at a small synapse of the central nervous system, made possible by highly intensified charge-coupled device imaging of hippocampal synaptic terminals, in which a single vesicle was labelled with the fluorescent membrane marker FM1-43 (ref. 6). In a small number of cases, full loss of fluorescent membrane dye was elicited by a single action potential, consistent with classical complete collapse. In most cases, however, action potentials triggered only partial loss of fluorescence, suggesting vesicular retention of membrane marker, consistent with 'kiss-and-run' vesicle cycling. An alternative hypothesis of independent fusion of partially stained vesicles arising from endosomal splitting could be excluded by observations on the size and timing of successive fusion events. Thus, our experimental evidence supports a predominance of kiss-and-run fusion events and rapid vesicular re-use.
Functional presynaptic vesicles have been subdivided into readily releasable (RRP) and reserve (RP) pools. We studied recycling properties of RRP vesicles through differential retention of FM1-43 and FM2-10 and by varying the time window for FM dye uptake. Both approaches indicated that vesicles residing in the RRP underwent rapid endocytosis (tau approximately 1s), whereas newly recruited RP vesicles were recycled slowly (tau approximately 30 s). With repeated challenges (hypertonic or electrical stimuli), the ability to release neurotransmitter recovered 10-fold more rapidly than restoration of FM2-10 destaining. Finding neurotransmission in the absence of destaining implied that rapidly endocytosed RRP vesicles were capable of reuse, a process distinct from repopulation from the RP. Reuse would greatly expand the functional capabilities of a limited number of vesicles in CNS terminals, particularly during intermittent bursts of activity.
The kinetics of exo-endocytotic recycling could restrict information transfer at central synapses if neurotransmission were entirely reliant on classical full-collapse fusion. Nonclassical fusion retrieval by kiss-and-run would be kinetically advantageous but remains controversial. We used a hydrophilic quencher, bromophenol blue (BPB), to help detect nonclassical events. Upon stimulation, extracellular BPB entered synaptic vesicles and quenched FM1-43 fluorescence, indicating retention of FM dye beyond first fusion. BPB also quenched fluorescence of VAMP (synaptobrevin-2)-EGFP, thus indicating the timing of first fusion of vesicles in the total recycling pool. Comparison with FM dye destaining revealed that kiss-and-run strongly prevailed over full-collapse fusion at low frequency, giving way to a near-even balance at high frequency. Quickening of kiss-and-run vesicle reuse was also observed at higher frequency in the average single vesicle fluorescence response. Kiss-and-run and reuse could enable hippocampal nerve terminals to conserve scarce vesicular resources when responding to widely varying input patterns.
The number and diversity of plasticity mechanisms in the brain raises a central question: does a neural circuit store all memories by stereotyped application of the available plasticity mechanisms, or can subsets of these mechanisms be selectively engaged for specific memories? The uniform architecture of the cerebellum has inspired the idea that plasticity mechanisms like cerebellar long-term depression (LTD) contribute universally to memory storage. To test this idea, we investigated a set of closely related, cerebellum-dependent motor memories. In mutant mice lacking Ca(2+)/calmodulin-dependent protein kinase IV (CaMKIV), the maintenance of cerebellar LTD is abolished. Although memory for an increase in the gain of the vestibulo-ocular reflex (VOR) induced with high-frequency stimuli was impaired in these mice, memories for decreases in VOR gain and increases in gain induced with low-frequency stimuli were intact. Thus, a particular plasticity mechanism need not support all cerebellum-dependent memories, but can be engaged selectively according to the parameters of training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.