The purpose of this study was to quantify the performance and assess the utility of two different types of scanners for radiochromic EBT film dosimetry: a commercial flatbed document scanner and a widely used radiographic film scanner. We evaluated the Epson Perfection V700 Photo flatbed scanner and the Vidar VXR Dosimetry Pro Advantage scanner as measurement devices for radiochromic EBT film. Measurements were made of scan orientation effects, response uniformity, and scanner noise. Scanners were tested using films irradiated with eight separate 3×3 cm2 fields to doses ranging from 0.115–5.119 Gy. ImageJ and RIT software was used for analyzing the Epson and Vidar scans, respectively. For repeated scans of a single film, the measurements in each dose region were reproducible to within ±0.3% standard deviation (SD) with both scanners. Film‐to‐film variations for corresponding doses were measured to be within ±0.4% SD for both Epson scanner and Vidar scanners. Overall, the Epson scanner showed a 10% smaller range of pixel value compared to the Vidar scanner. Scanner noise was small: ±0.3% SD for the Epson and ±0.2% for the Vidar. Overall measurement uniformity for blank film in both systems was better than ±0.2%, provided that the leading and trailing 2 cm film edges were neglected in the Vidar system. In this region artifacts are attributed to the film rollers. Neither system demonstrated a clear measurement advantage. The Epson scanner is a relatively inexpensive method for analyzing radiochromic film, but there is a lack of commercially available software. For a clinic already using a Vidar scanner, applying it to radiochromic film is attractive because commercial software is available. However, care must be taken to avoid using the leading and trailing film edges.PACS number: 87.55.Qr
Purpose-(1) To quantify and compare the effects of respiratory motion on paired passively scattered proton therapy (PSPT) and intensity modulated photon therapy (IMRT) plans. (2) To establish the relationship between the magnitude of tumor motion and the respiratory induced dose difference for both modalities.Methods and Materials-In a randomized clinical trial comparing PSPT and IMRT, radiotherapy plans have been designed following common planning protocols. Four-dimensional (4D) dose was computed for PSPT and IMRT plans for a patient cohort with respiratory motion ranging 3-17 mm. Image registration and dose accumulation were performed using grayscalebased deformable image registration algorithms. The dose-volume histogram (DVH) differences (4D-3D) were compared for PSPT and IMRT. Changes in 4D-3D dose were correlated to the magnitude of tumor respiratory motion.Results-The average 4D-3D dose to 95% of the internal target volume was close to zero, with 19/20 patients within 1% of prescribed dose for both modalities. The mean 4D-3D between the two modalities were not statistically significant (p <0.05) for all DVH indices (mean ± SD) except the lung V5 (PSPT: +1.1±0.9%, IMRT: +0.4±1.2%) and maximum cord dose (PSPT: +1.5±2.9 Gy, IMRT: 0.0±0.2 Gy). Changes in 4D-3D dose were correlated to tumor motion for only two indices: Dose to 95% PTV, and heterogeneity index.Conclusions-With our current margin formalisms, target coverage was maintained in the presence of respiratory motion up to 17 mm for both PSPT and IMRT. Only 2/11 of 4D-3D indices (Lung V5 and spinal cord max) were statistically distinguishable between PSPT and IMRT, contrary to the notion that proton therapy will be more susceptible to respiratory motion. Due to the lack of strong correlations with 4D-3D dose differences in PSPT and IMRT, the extent Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Conflict of
Respiratory motion is traditionally assessed using tumor motion magnitude. In proton therapy, respiratory motion causes density variations along the beam path that result in uncertainties of proton range. This work has investigated the use of water‐equivalent thickness (WET) to quantitatively assess the effects of respiratory motion on calculated dose in passively scattered proton therapy (PSPT). A cohort of 29 locally advanced non‐small cell lung cancer patients treated with 87 PSPT treatment fields were selected for analysis. The variation in WET (ΔWET) along each field was calculated between exhale and inhale phases of the simulation four‐dimensional computed tomography. The change in calculated dose (ΔDose) between full‐inhale and full‐exhale phase was quantified for each field using dose differences, 3D gamma analysis, and differential area under the curve (ΔAUC) analysis. Pearson correlation coefficients were calculated between ΔDose and ΔWET. Three PSPT plans were redesigned using field angles to minimize variations in ΔWET and compared to the original plans. The median ΔWET over 87 treatment fields ranged from 1‐9 mm, while the ΔWET 95th percentile value ranged up to 42 mm. The ΔWET was significantly correlated false(p<0.001false) to the ΔDose for all metrics analyzed. The patient plans that were redesigned using ΔWET analysis to select field angles were more robust to the effects of respiratory motion, as ΔAUC values were reduced by more than 60% in all three cases. The tumor motion magnitude alone does not capture the potential dosimetric error due to respiratory motion because the proton range is sensitive to the motion of all patient anatomy. The use of ΔWET has been demonstrated to identify situations where respiratory motion can impact the calculated dose. Angular analysis of ΔWET may be capable of designing radiotherapy plans that are more robust to the effects of respiratory motion.PACS number(s): 87.55.‐x
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.