The purpose of this study was to quantify the performance and assess the utility of two different types of scanners for radiochromic EBT film dosimetry: a commercial flatbed document scanner and a widely used radiographic film scanner. We evaluated the Epson Perfection V700 Photo flatbed scanner and the Vidar VXR Dosimetry Pro Advantage scanner as measurement devices for radiochromic EBT film. Measurements were made of scan orientation effects, response uniformity, and scanner noise. Scanners were tested using films irradiated with eight separate 3×3 cm2 fields to doses ranging from 0.115–5.119 Gy. ImageJ and RIT software was used for analyzing the Epson and Vidar scans, respectively. For repeated scans of a single film, the measurements in each dose region were reproducible to within ±0.3% standard deviation (SD) with both scanners. Film‐to‐film variations for corresponding doses were measured to be within ±0.4% SD for both Epson scanner and Vidar scanners. Overall, the Epson scanner showed a 10% smaller range of pixel value compared to the Vidar scanner. Scanner noise was small: ±0.3% SD for the Epson and ±0.2% for the Vidar. Overall measurement uniformity for blank film in both systems was better than ±0.2%, provided that the leading and trailing 2 cm film edges were neglected in the Vidar system. In this region artifacts are attributed to the film rollers. Neither system demonstrated a clear measurement advantage. The Epson scanner is a relatively inexpensive method for analyzing radiochromic film, but there is a lack of commercially available software. For a clinic already using a Vidar scanner, applying it to radiochromic film is attractive because commercial software is available. However, care must be taken to avoid using the leading and trailing film edges.PACS number: 87.55.Qr
Accurate beam data acquisition during commissioning is essential for modeling the treatment planning system and dose calculation in radiotherapy. Although currently several commercial scanning systems are available, there is no report that compared the differences among the systems because most institutions do not acquire several scanning systems due to the high cost, storage space, and infrequent usage. In this report, we demonstrate the intra‐ and intervariability of beam profiles measured with four commercial scanning systems. During a recent educational and training workshop, four different vendors of beam scanning water phantoms were invited to demonstrate the operation and data collection of their systems. Systems were set up utilizing vendor‐recommended protocols and were operated with a senior physicist, who was assigned as an instructor along with vendor. During the training sessions, each group was asked to measure beam parameters, and the intravariability in percent depth dose (PDD). At the end of the day, the profile of one linear accelerator was measured with each system to evaluate intervariability. Relatively very small (SD < 0.12%) intervariability in PDD was observed among four systems at a region deeper than peak (1.5 cm). All systems showed almost identical profiles. At the area within 80% of radiation field, the average, and maximum differences were within ± 0.35% and 0.80%, respectively, compared to arbitrarily chosen IBA system as reference. In the penumbrae region, the distance to agreement (DTA) of the region where dose difference exceed ± 1% was less than 1 mm. Repeated PDD measurement showed small intravariability with SD < 0.5%, although large SD was observed in the buildup region. All four water phantom scanning systems demonstrated adequate accuracy for beam data collection (i.e., within 1% of dose difference or 1 mm of DTA among each other). It is concluded that every system is capable of acquiring accurate beam. Thus the selection of a water scanning system should be based on institutional comfort, personal preference of software and hardware, and financial consideration.PACS number: 87.53.Bn
A system for measuring two-dimensional (2D) dose distributions in orthogonal anatomical planes in the cranium was developed and used to evaluate the accuracy of coplanar conformal therapy using ExacTrac image guidance. Dose distributions were measured in the axial, sagittal, and coronal planes using a CIRS (Computerized Imaging Reference Systems, Inc.) anthropomorphic head phantom with a custom internal film cassette. Sections of radiographic Kodak EDR2 film were cut, processed, and digitized using custom templates. Spatial and dosimetric accuracy and precision of the film system were assessed. BrainScan planned a coplanar-beam treatment to conformally irradiate a 2-cm-diameter x 2-cm-long cylindrical planning target volume. Prior to delivery, phantom misalignments were imposed in combinations of +/- 8 mm offsets in each of the principal directions. ExacTrac x-ray correction was applied until the phantom was within an acceptance criteria of 1 mm/1 degrees (first two measurement sets) or 0.4 mm/0.4 degrees (last two measurement sets). Measured dose distributions from film were registered to the treatment plan dose calculations and compared. Alignment errors, displacement between midpoints of planned and measured 70% isodose contours (Deltac), and positional errors of the 80% isodose line were evaluated using 49 2D film measurements (98 profiles). Comparison of common, but independent measurements of Deltac showed that systematic errors in the measurement technique were 0.2 mm or less along all three anatomical axes and that random error averaged [formula: see text] 0.29+/-0.06 mm for the acceptance criteria of 1 mm/1 degrees and 0.15 +/- 0.02 mm for the acceptance criteria of 0.4 mm/0.4 degrees. The latter was consistent with independent estimates that showed the precision of the measurement system was 0.3 mm (2sigma). Values of Deltac were as great as 0.9, 0.3, and 1.0 mm along the P-A, R-L, and I-S axes, respectively. Variations in Deltac along the P-A axis were correlated to misalignments between laser isocenter and radiation isocenter as documented by daily clinical Lutz tests. Based on results of comparisons of measured with calculated positions of the 80% dose lines along the major anatomical axes, a 1.25, 1.0, and 1.0 mm (0.75, 0.5, and 0.25 mm) gross tumor volume (GTV)-planning target volume (PTV) margin to account for delivery error would be appropriate for the P-A, R-L, and I-S axes, respectively, for an acceptance criteria of 1 mm/1 degrees (0.4 mm/0.4 degrees). It typically took 2 (3) ExacTrac x-ray image sets to achieve and verify acceptance criteria of 1 mm/1 degrees (0.4 mm/0.4 degrees). Our results demonstrated a measurement technique using a CIRS anthropomorphic head phantom with a modified film cassette, radiographic film (Kodak EDR2) with a custom film cutting template, and film dosimetry software has been developed and successfully applied to our clinic. It is recommended that a third party offer this service. Our goal of achieving accuracy of delivery of 1 mm or better in each of the three maj...
This study evaluated the accuracy of measuring the motion of an internal target using four‐dimensional computed tomography (4DCT) scanning and the BrainLAB ExacTrac X‐ray imaging system. Displacements of a metal coil implanted in a commercial respiratory phantom were measured in each system and compared to the known motion. A commercial respiratory motion phantom containing a metal coil as a surrogate target was used. Phantom longitudinal motions were sinusoidal with a 4.0 second period and amplitudes ranging from 5–25 mm. We acquired 4DCT and ExacTrac images of the coil at specified respiratory phases and recorded the coordinates of the coil ends. Coil displacement relative to the 0% phase (full‐inhale) position were computed for the ExacTrac and 4DCT imaging systems. Coil displacements were compared to known displacements based on the phantom's sinusoidal motion. Coil length distortion due to 4DCT phase binning was compared to the known physical length of the coil (31 mm). The maximum localization error for both coil endpoints for all motion settings was 3.5 mm for the 4DCT and 0.8 mm for the ExacTrac gating system. Coil length errors measured on the 4DCT were less than 0.8 mm at end inhale/exhale phases, but up to 8.3 mm at mid‐inhalation phases at the largest motion amplitude (25 mm). Due to the fast image acquisition time (100 ms), no coil distortion was observable in the ExacTrac system. 4DCT showed problems imaging the coil during mid‐respiratory phases of higher velocity (phases 20%–30% and 70%–80%) due to distortion caused by residual motion within the 4DCT phase bin. The ExacTrac imaging system was able to accurately localize the coil in the respiratory phantom over all phases of respiration. For our clinic, where end‐respiration phases from 4DCT may be used for treatment planning calculations, the ExacTrac system is used to measure internal target motion. With the ExacTrac system, planning target size and motion uncertainties are minimized, potentially reducing internal target volume margins in gated radiotherapy.PACS number: 87.56.‐v
A 10-year-old male captive tiger (Panthera tigris) developed right-sided facial asymmetry and enlargement. Computed tomography revealed a destructive mass of the right maxillary bone with right nasal cavity involvement. Histopathology indicated a spindle cell sarcoma. A single fraction of 22 Gy using stereotactic radiotherapy was prescribed. After treatment, the facial conformation returned to normal and the tiger resumed normal behavior. Diagnostics 4 months later indicated severe metastatic disease. Humane euthanasia and necropsy were performed. This is the first case utilizing stereotactic radiotherapy for the treatment of cancer in a tiger.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.