Infrasound data were collected using portable arrays in a region of variable terrain elevation to quantify the effects of topography on observed signal amplitude and waveform features at distances less than 25 km from partially contained explosive sources during the Frozen Rock Experiment (FRE) in 2006. Observed infrasound signals varied in amplitude and waveform complexity, indicating propagation effects that are due in part to repeated local maxima and minima in the topography on the scale of the dominant wavelengths of the observed data. Numerical simulations using an empirically derived pressure source function combining published FRE accelerometer data and historical data from Project ESSEX, a time-domain parabolic equation model that accounted for local terrain elevation through terrain-masking, and local meteorological atmospheric profiles were able to explain some but not all of the observed signal features. Specifically, the simulations matched the timing of the observed infrasound signals but underestimated the waveform amplitude observed behind terrain features, suggesting complex scattering and absorption of energy associated with variable topography influences infrasonic energy more than previously observed.
The petroleum industry, through the production and consumption of oil and gas, contributes to global greenhouse gas emissions. However, the industry’s leadership and experience in underground injection and storage of CO2, especially through CO2 enhanced oil recovery (CO2-EOR), which has been proposed as a possible solution to reducing atmospheric CO2 levels, has not been well acknowledged. Unlike traditional CO2-EOR, which tends to be a net carbon emitter due to the use of predominantly natural CO2, rather than anthropogenic, CO2-EOR+ focuses on storing a larger volume of CO2. Thus CO2-EOR+ not only provides a potential solution to dispose of anthropogenic emissions but at the same time reduces reliance on imported oil through increased domestic production. Increased industry interest and energy policy strategies directed at reducing and/or removing emissions from industry processes reflect the growing social and economic impetus to improve operation practices and the petroleum industry’s reputation. Residual oil zones (ROZs) below identified oil–water contacts provide an excellent target for the application of CO2-EOR+. They offer a producible residual oil resource accessible through CO2-EOR, as well as a large pore volume for CO2 storage, with efforts focused on converting ROZs into resources and reserves. Existing fields in the Surat and Cooper-Eromanga Basins are already well placed to utilise anthropogenic CO2 sources to achieve conventional CO2-EOR metrics. The ROZs in these basins will hopefully allow potential EOR projects to increase the CO2 volumes stored, per incremental barrel of oil, well past traditional levels (0.2–0.3 tCO2/bbl), and in doing so, potentially achieve net negative-emission oil.
Sequestration of anthropogenic CO2 into underground brine-saturated reservoirs is an immediate option for Australia to reduce CO2 emissions into the atmosphere. Many sites for CO2 storage have been defined within many Australian sedimentary basins. It is anticipated that seismic technology will form the foundation for monitoring CO2 storage within the subsurface, although it is recognised that several other technologies will also be used in support of seismic or in situations where seismic recording is not suitable. The success of seismic monitoring will be determined by the magnitude of the change in the elastic properties of the reservoir during the lifecycle of CO2 storage. In the short-term, there will be a strong contrast in density and compressibility between free CO2 and brine. The contrast between these fluids is greater at shallower depth and higher temperature where CO2 resembles a vapour. The significant change in the elastic moduli of the reservoir will enable time-lapse seismic methods to readily monitor structural or hydrodynamic trapping of CO2 below an impermeable seal. Because the acoustic contrast between brine saturated with CO2 and brine containing no dissolved CO2 is very slight, however, dissolved CO2 is unlikely to be detected by any seismic technology, including high-resolution borehole seismic. The detection of increases in porosity, associated with dissolution of susceptible minerals within the reservoir may provide a means for qualitative monitoring of CO2 dissolution. Conversion of aqueous CO2 into carbonate minerals should cause a detectable rise in the elastic moduli of the rock frame, especially the shear moduli. The magnitude of this rise increases with depth and demonstrates the potential contribution that can be made from repeated shear-wave and multi-component seismic measurements. Forward modelling suggests that the optimal reservoir depth for seismic monitoring of CO2 storage within an unconsolidated reservoir is between 1,000 and 2,500 m. Higher reservoir temperature is also preferred so that free CO2 will resemble a vapour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.