Advanced seals have been applied to numerous turbine machines over the last decade to improve the performance and output. Industrial experiences have shown that significant benefits can be attained if the seals are designed and applied properly. On the other hand, penalties can be expected if brush seals are not designed correctly. In recent years, attempts have been made to apply brush seals to more challenging locations with high speed (>400 m/s), high temperature (>650 °C), and discontinuous contact surfaces, such as blade tips in a turbine. Various failure modes of a brush seal can be activated under these conditions. It becomes crucial to understand the physical behavior of a brush seal under the operating conditions, and to be capable of quantifying seal life and performance as functions of both operating parameters and seal design parameters. Design criteria are required for different failure modes such as stress, fatigue, creep, wear, oxidation etc. This paper illustrates some of the most important brush seal design criteria and the trade-off of different design approaches.
Advanced seals have been applied to numerous turbine machines over the last decade to improve the performance and output. Industrial experiences have shown that significant benefits can be attained if the seals are designed and applied properly. On the other hand, penalties can be expected if brush seals are not designed correctly. In recent years, attempts have been made to apply brush seals to more challenging locations with high speed (>400 m/s), high temperature (>650 °C), and discontinuous contact surfaces, such as blade tips in a turbine. Various failure modes of a brush seal can be activated under these conditions. It becomes crucial to understand the physical behavior of a brush seal under the operating conditions, and to be capable of quantifying seal life and performance as functions of both operating parameters and seal design parameters. Design criteria are required for different failure modes such as stress, fatigue, creep, wear, oxidation etc. This paper illustrates some of the most important brush seal design criteria and the trade-off of different design approaches.
A team led by Gas Technology Institute (GTI), Southwest Research Institute® (SwRI®) and General Electric Global Research (GE-GR), along with the University of Wisconsin and Natural Resources Canada (NRCan), is actively executing a project called “STEP” [Supercritical Transformational Electric Power project], to design, construct, commission, and operate an integrated and reconfigurable 10 MWe sCO2 [supercritical CO2] Pilot Plant Test Facility located at SwRI’s San Antonio, Texas campus. The $119 million project is funded $84 million by the US DOE’s National Energy Technology Laboratory (NETL Award Number DE-FE0028979) and $35 million cost share by the team, component suppliers and others interested in sCO2 technology. This project is a significant step toward sCO2 cycle based power generation commercialization and will inform the performance, operability, and scale-up to commercial facilities. Supercritical CO2 (sCO2) power cycles are Brayton cycles that utilize supercritical CO2 working fluid to convert heat into power. They offer the potential for higher system efficiencies than other energy conversion technologies such as steam Rankine or organic Rankine cycles, especially when operating at elevated temperatures. sCO2 power cycles are being considered for a wide range of applications including fossil-fired systems, waste heat recovery, concentrated solar power, and nuclear. The pilot plant design, procurement, fabrication, and construction are ongoing at the time of this publication. By the end of this 6-year project, the operability of the sCO2 power cycle will be demonstrated and documented starting with facility commissioning as a simple closed recuperated cycle configuration initially operating at a 500°C (932°F) turbine inlet temperature and progressing to a recompression closed Brayton cycle technology (RCBC) configuration operating at 715°C (1319 °F).
sCO2 power cycles offer improved cycle efficiencies compared with traditional steam Rankine cycles. However, the turbomachinery required to support such a cycle does not exist at a commercial scale and requires development. This paper describes a new 10 MWe scale sCO2 turbine was developed and demonstrated in an sCO2 closed-loop recompression Brayton cycle. Since this turbine was developed for Concentrating Solar Power (CSP) applications, a target inlet temperature of over 700°C was chosen using funding from the US DOE SunShot initiative and industry partners. However, it can be applied to traditional heat sources such as natural gas, coal, and nuclear power. Traditional Rankine steam cycle thermal efficiencies are typically in the 35–40% range, but can be as high as 45% for advanced ultra-supercritical steam cycles. The sCO2 cycle can approach 50% thermal efficiency using externally fired heat sources. Furthermore, this cycle is also well suited for bottoming cycle waste heat recovery applications, which typically operate at lower temperatures. The high-power density and lower thermal mass of the sCO2 cycle results in compact, high-efficiency power blocks that can respond quickly to transient environmental changes and transient operation, a particular advantage for solar, waste heat, and ship-board applications. The power density of the turbine is significantly greater than traditional steam turbines and is comparable to liquid rocket engine turbo pumps. This paper describes the design and construction of the turbine and provides additional testing of the 10 MWe turbine in a 1 MWe test facility including a description of rotordynamics, thermal management, rotor aero and mechanical design, shaft-end and casing seals, bearings, and couplings. Test data for the turbine is included, as it achieves its operational goal of 715°C, 250 bara, and 27,000 rpm.
The Gas Technology Institute (GTI®), Southwest Research Institute® (SwRI®) and General Electric Global Research (GE-GR) are executing the Supercritical Transformational Electric Power, “STEP” project, to design, construct, commission, and operate an integrated and reconfigurable 10 MWe sCO2 [supercritical CO2] Pilot Plant Test Facility. The $156* million project is funded $115 million by the US DOE’s National Energy Technology Laboratory (NETL Award Number DE-FE0028979) and $41* million by the team members, component suppliers, and Joint Industry Program (JIP) members. The facility is currently under final assembly and is located at SwRI’s San Antonio, Texas, USA campus. This project is a significant step toward sCO2 cycle based power generation commercialization and is informing the performance, operability, and scale-up to commercial plants. Significant progress has been made on this STEP project. The design phase is complete (Phase 1) and included procurements of long-lead time delivery components. Now well into Phase 2, a ground-breaking was held in 2018, and civil work and the construction of a dedicated 22,000 ft2 building was completed in 2020. Most major equipment is in final fabrication or delivered to site as of the end of 2021. These efforts have already provided valuable project learnings for technology commercialization. At time of paper writing most equipment has been received and installed, and commissioning will begin in the first half of 2022. An update on commissioning and experience with sCO2 equipment is given here-in.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.