We report a method for the preparation of colloidal ZnO-diluted magnetic semiconductor quantum dots (DMS-QDs) by alkaline-activated hydrolysis and condensation of zinc acetate solutions in dimethyl sulfoxide (DMSO). Mechanistic studies reveal that Co(2+) and Ni(2+) dopants inhibit nucleation and growth of ZnO nanocrystals. In particular, dopants are quantitatively excluded from the critical nuclei but are incorporated nearly isotropically during subsequent growth of the nanocrystals. The smaller nanocrystal diameters that result upon doping are explained by the Gibbs-Thompson relationship between lattice strain and crystal solubility. We describe methods for cleaning the nanocrystal surfaces of exposed dopants and for redispersion of the final DMS-QDs. Homogeneous substitutional doping is verified by high-resolution low-temperature electronic absorption and magnetic circular dichroism (MCD) spectroscopies. A "giant Zeeman effect" is observed in the band gap transition of Co(2+):ZnO DMS-QDs. MCD and Zeeman spectroscopies are used to quantify the magnitude of the p-d exchange interaction (N(0)beta) that gives rise to this effect. N(0)beta values of -2.3 +/- 0.3 eV (-18 500 cm(-1)) for Co(2+):ZnO and -4.5 +/- 0.6 eV (-36 300 cm(-1)) for Ni(2+):ZnO have been determined. Ligand-to-metal charge-transfer transitions are observed in the MCD spectra of both Co(2+):ZnO and Ni(2+):ZnO DMS-QDs and are analyzed in the context of an optical electronegativity model. The importance of these charge-transfer states in determining N(0)beta is discussed. Ferromagnetism with T(C) > 350 K is observed in aggregated nanocrystals of Co(2+):ZnO that unambiguously demonstrates the existence of intrinsic high-T(C) ferromagnetism in this class of DMSs.
The development of guided chemical vapor deposition (CVD) growth of single-walled carbon nanotubes provides a great platform for wafer-scale integration of aligned nanotubes into circuits and functional electronic systems. However, the coexistence of metallic and semiconducting nanotubes is still a major obstacle for the development of carbon-nanotube-based nanoelectronics. To address this problem, we have developed a method to obtain predominantly semiconducting nanotubes from direct CVD growth. By using isopropyl alcohol (IPA) as the carbon feedstock, a semiconducting nanotube purity of above 90% is achieved, which is unambiguously confirmed by both electrical and micro-Raman measurements. Mass spectrometric study was performed to elucidate the underlying chemical mechanism. Furthermore, high performance thin-film transistors with an on/off ratio above 10(4) and mobility up to 116 cm(2)/(V·s) have been achieved using the IPA-synthesized nanotube networks grown on silicon substrate. The method reported in this contribution is easy to operate and the results are highly reproducible. Therefore, such semiconducting predominated single-walled carbon nanotubes could serve as an important building block for future practical and scalable carbon nanotube electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.