We present a compact, fibre-coupled single photon source using gradient-index (GRIN) lenses and an InAsP semiconductor quantum dot embedded within an InP photonic nanowire waveguide. A GRIN lens assembly is used to collect photons close to the tip of the nanowire, coupling the light immediately into a single mode optical fibre. The system provides a stable, high brightness source of fibre-coupled single photons. Using pulsed excitation, we demonstrate on-demand operation with a single photon purity of 98.5% when exciting at saturation in a device with a source-fibre collection efficiency of 35% and an overall single photon collection efficiency of 10%. We also demonstrate “plug and play” operation using room temperature photoluminescence from the InP nanowire for room temperature alignment.
Birefringence in optical fibers poses a challenge to controllably delivering polarized light. Strain-induced birefringence caused by bends in the fiber, vibrations, or a large temperature gradient can significantly alter the polarization, making it particularly difficult to deliver polarization states to low-temperature environments by fiber. In this paper, we investigate the transmission of polarized light through a fiber and discuss a method we have developed for delivering arbitrarily polarized light to the base stage of a dilution refrigerator using a standard optical fiber. We have created a compact, cryogenic optical system to identify the polarization of the delivered light, while room-temperature waveplates and a mathematical fiber model are used to fully characterize and compensate for the fiber’s birefringent effects. We show here that we are able to deliver horizontal, vertical, diagonal, anti-diagonal, right circular, and left circular polarization states to milli-Kelvin temperatures, with state fidelities of greater than 0.96 being achieved in all cases. Additionally, we demonstrate that we can deliver randomly selected elliptical states through a standard fiber to the refrigerator. This opens up new opportunities for fiber-based optical experiments using polarized light, such as quantum information experiments using quantum states encoded in the polarization of single photons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.