The African trypanosome Trypanosoma brucei spp. is a paradigm for antigenic variation, the orchestrated alteration of cell surface molecules to evade host immunity. The parasite elicits robust antibody-mediated immune responses to its variant surface glycoprotein (VSG) coat, but evades immune clearance by repeatedly accessing a large genetic VSG repertoire and 'switching' to antigenically distinct VSGs. This persistent immune evasion has been ascribed exclusively to amino-acid variance on the VSG surface presented by a conserved underlying protein architecture. We establish here that this model does not account for the scope of VSG structural and biochemical diversity. The 1.4-Å-resolution crystal structure of the variant VSG3 manifests divergence in the tertiary fold and oligomeric state. The structure also reveals an O-linked carbohydrate on the top surface of VSG3. Mass spectrometric analysis indicates that this O-glycosylation site is heterogeneously occupied in VSG3 by zero to three hexose residues and is also present in other VSGs. We demonstrate that this O-glycosylation increases parasite virulence by impairing the generation of protective immunity. These data alter the paradigm of antigenic variation by the African trypanosome, expanding VSG variability beyond amino-acid sequence to include surface post-translational modifications with immunomodulatory impact.
Trypanosoma brucei is a protozoan parasite that evades its host’s adaptive immune response by repeatedly replacing its dense variant surface glycoprotein (VSG) coat from its large genomic VSG repertoire. While the mechanisms regulating VSG gene expression and diversification have been examined extensively, the dynamics of VSG coat replacement at the protein level, and the impact of this process on successful immune evasion, remain unclear. Here we evaluate the rate of VSG replacement at the trypanosome surface following a genetic VSG switch, and show that full coat replacement requires several days to complete. Using in vivo infection assays, we demonstrate that parasites undergoing coat replacement are only vulnerable to clearance via early IgM antibodies for a limited time. Finally, we show that IgM loses its ability to mediate trypanosome clearance at unexpectedly early stages of coat replacement based on a critical density threshold of its cognate VSGs on the parasite surface.
Antigenic variation is a common microbial survival strategy, powered by diversity in expressed surface antigens across the pathogen population over the course of infection. Even so, among pathogens, African trypanosomes have the most comprehensive system of antigenic variation described. African trypanosomes (Trypanosoma brucei spp.) are unicellular parasites native to sub-Saharan Africa, and the causative agents of sleeping sickness in humans and of n'agana in livestock. They cycle between two habitats: a specific species of fly (Glossina spp. or, colloquially, the tsetse) and the bloodstream of their mammalian hosts, by assuming a succession of proliferative and quiescent developmental forms, which vary widely in cell architecture and function. Key to each of the developmental forms that arise during these transitions is the composition of the surface coat that covers the plasma membrane. The trypanosome surface coat is extremely dense, covered by millions of repeats of developmentally specified proteins: procyclin gene products cover the organism while it resides in the tsetse and metacyclic gene products cover it while in the fly salivary glands, ready to make the transition to the mammalian bloodstream. But by far the most interesting coat is the Variant Surface Glycoprotein (VSG) coat that covers the organism in its infectious form (during which it must survive free living in the mammalian bloodstream). This coat is highly antigenic and elicits robust VSG-specific antibodies that mediate efficient opsonization and complement mediated lysis of the parasites carrying the coat against which the response was made. Meanwhile, a small proportion of the parasite population switches coats, which stimulates a new antibody response to the prevalent (new) VSG species and this process repeats until immune system failure. The disease is fatal unless treated, and treatment at the later stages is extremely toxic. Because the organism is free living in the blood, the VSG:antibody surface represents the interface between pathogen and host, and defines the interaction of the parasite with the immune response. This interaction (cycles of VSG switching, antibody generation, and parasite deletion) results in stereotypical peaks and troughs of parasitemia that were first recognized more than 100 years ago. Essentially, the mechanism of antigenic variation in T. brucei results from a need, at the population level, to maintain an extensive repertoire, to evade the antibody response. In this chapter, we will examine what is currently known about the VSG repertoire, its depth, and the mechanisms that diversify it both at the molecular (DNA) and at the phenotypic (surface displayed) level, as well as how it could interact with antibodies raised specifically against it in the host.
Anti-CD19 CAR T cell therapies have improved outcomes for non-Hodgkin lymphoma (NHL) patients. However, only 30-40% of patients treated with commercially available CART cell therapies obtain long term remission, highlighting the need for more efficacious and durable therapies. Emerging clinical data suggest several failure modes for CD19 CAR T cell therapies: including loss or downregulation of CD19 antigen, loss of co-stimulation pathways on tumor cells, exhaustion of CAR-T cells, and immunosuppressive microenvironments. To overcome these hurdles, we devised the next-generation autologous CAR-T cell therapy bbT369. bbT369 is dual targeted (CD79a/CD20) CAR T cell therapy that uses an OR gate design to limit antigen escape, has split 41BB and CD28 co-stimulatory domain architecture to augment T cell activation, and contains a knock-out of the CBLB gene to enhance potency and reduce T cell exhaustion. Here we report the first results with bbT369, demonstrating anti-lymphoma activity in in vitro assays and in vivo using xenograft mouse models. We demonstrate that CD79a and CD20 expression is B cell lineage restricted in normal human tissue and confirm that these proteins are co-expressed in diffuse large B cell samples. To target these antigens, we show a split dual-targeting CAR configuration is optimal for bbT369-directed tumor cell killing. Using an engineered megaTAL, we demonstrate high on-target activity of greater than 75% insertions and deletions (Indels) at the CBLB target site using clinical-scale manufacturing processes and low off-target activity (all off-targets less than 0.2%). In in vitro tumor co-culture assays, we show that inclusion of the CBLB gene edit in bbT369 increases Interleukin (IL)-2 production relative to an unedited anti-CD79a/CD20 CAR T cell control. Using various xenograft mouse models, we showed that bbT369 has similar or improved efficacy compared to anti-CD19 CAR drug product, including in low tumor-antigen models. In the Toledo subcutaneous xenograft model, bbT369 showed a 3-fold increase in T cell expansion compared with an unedited anti-CD79a/CD20 dual-targeting CAR T cell control. Furthermore, while a fraction of mice (3/5) receiving the unedited anti-CD79a/CD20 dual-targeting CAR T cells experienced late relapses (between 60-80 days following initial tumor clearance), all mice (n=5) receiving bbT369 were fully protected from late relapses (up to day 104 of follow-up). Collectively, the data support a first-in-human trial for bbT369 to evaluate initial safety and efficacy in NHL patients. Citation Format: Michael Certo, Christopher Baldeviano, Sharlene Adams, Martin Asimis, Alexander Astrakhan, Andy Chavkin, Maria L. Cabral, Jimmy Chu, Marie Debrue, Devina Desai, John Evans, Pinky Htun, Amanda Iniguez, Jordan Jarjour, Carl Johnson, Harini Kantamneni, Sema Kurtulus, Michael Magee, Unja Martin, Seamus McKenney, Sara Miller, Prashant Nambiar, Vinh Khang Nguyen, Mauris Nnamani, Jen Obrigewitch, Lisa Pechilis, Molly Perkins, Christopher Petersen, Jason Pinger, Cindy Rogers, Nick Rouillard, Kendal Sanson, Emily Thompson, Collin Walter, Roslyn Yi, Sarah Voytek, Philip Gregory. bbT369, a dual-targeted and CBLB gene-edited autologous CART product, demonstrates anti-lymphoma activity in preclinical mouse models [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 581.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.