Over the last decade, concerns have been raised about potential respiratory health effects associated with occupational exposure to the flavoring additives diacetyl and 2,3-pentanedione. Both of these diketones are also natural components of many foods and beverages, including roasted coffee. To date, there are no published studies characterizing workplace exposures to these diketones during commercial roasting and grinding of unflavored coffee beans. In this study, we measured naturally occurring diacetyl, 2,3-pentanedione, and respirable dust at a facility that roasts and grinds coffee beans with no added flavoring agents. Sampling was conducted over the course of three roasting batches and three grinding batches at varying distances from a commercial roaster and grinder. The three batches consisted of lightly roasted soft beans, lightly roasted hard beans, and dark roasted hard beans. Roasting occurred for 37 to 41 min, and the grinding process took between 8 and 11 min. Diacetyl, 2,3-pentanedione, and respirable dust concentrations measured during roasting ranged from less than the limit of detection (
Diacetyl, a suspected cause of respiratory disorders in some food and flavorings manufacturing workers, is also a natural component of roasted coffee. We characterized diacetyl exposures that would plausibly occur in a small coffee shop during the preparation and consumption of unflavored coffee. Personal (long- and short-term) and area (long-term) samples were collected while a barista ground whole coffee beans, and brewed and poured coffee into cups. Simultaneously, long-term personal samples were collected as two participants, the customers, drank one cup of coffee each per h. Air sampling and analyses were conducted in accordance with OSHA Method 1012. Diacetyl was detected in all long-term samples. The long-term concentrations for the barista and area samples were similar, and ranged from 0.0130.016 ppm; long-term concentrations for the customers were slightly lower and ranged from 0.0100.014 ppm. Short-term concentrations ranged from below the limit of detection (<0.0047 ppm)0.016 ppm. Mean estimated 8 h time-weighted average (8 h TWA) exposures for the barista ranged from 0.0070.013 ppm; these values exceed recommended 8 h TWA occupational exposure limits (OELs) for diacetyl and are comparable to long-term personal measurements collected in various food and beverage production facilities. The concentrations measured based on area sampling were comparable to those measured in the breathing zone of the barista, thus exceedances of the recommended OELs may also occur for coffee shop workers who do not personally prepare coffee (e.g., cashier, sanitation/maintenance). These findings suggest that the practicality and scientific basis of the recommended OELs for diacetyl merit further consideration.
Antimicrobial agents have become an essential tool in controlling the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and guidelines on their use have been issued by various public health agencies. Through its Emerging Viral Pathogen Guidance for Antimicrobial Pesticides, the US Environmental Protection Agency has approved numerous surface disinfectant products for use against SARS-CoV-2. Despite their widespread use and range of associated health hazards, the majority of active ingredients in antimicrobial products, such as surface disinfectants, lack established occupational exposure limits (OELs) to assist occupational health professionals in characterizing risks from exposures to these chemicals. Based on established approaches from various organizations, a framework for deriving OELs specific to antimicrobial agents was developed that relies on a weight-of-evidence evaluation of the available data. This framework involves (1) a screening-level toxicological assessment based on a review of the existing literature and recommendations, (2) identification of the critical adverse effect(s) and dose–response relationship(s), (3) identification of alternative health-based exposure limits (HBELs), (4) derivation of potential OELs based on identified points of departure and uncertainty factors and/or modification of existing alternative HBELs, and (5) selection of an appropriate OEL. To demonstrate the use of this framework, a case study is described for selection of an OEL for a disinfectant product containing quaternary ammonium compounds (quats). Three potential OELs were derived for this product based on irritation toxicity data, developmental and reproductive toxicity (DART) data, and modification of an existing HBEL. The final selected OEL for the quats-containing product was 0.1 mg/m3, derived from modification of an existing HBEL. This value represented the lowest resulting value of the three approaches, and thus, was considered protective of irritation and potential DART.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.