From the 344 state climate divisions in the conterminous United States, nine distinct regions of warm-season drought variability are identified using principal component analysis. The drought metric used is the Palmer hydrological drought index for the period 1895-2008. The focus of this paper is multi-decadal drought variability in the Southeast (SEUS) and eastern Gulf South (EGS) regions of the United States, areas in which the lowfrequency forcing mechanisms of warm-season drought are still poorly understood. Low-frequency drought variability in the SEUS and EGS is associated with smoothed indexed time series of major ocean-atmosphere circulation features, including two indices of spatiotemporal variability in the North Atlantic subtropical anticyclone (Bermuda high). Long-term warm-season drought conditions are significantly out of phase between the two regions. Multi-decadal regimes of above-and below-average moisture in the SEUS and EGS are closely associated with slow variability in sea surface temperatures in the North Atlantic Ocean and with the summer mean position and mean strength of the Bermuda high. Multivariate linear regression indicates that 82%-92% of the low-frequency variability in warm-season moisture is explained by two of the three leading principal components of low-frequency variability in the climate indices. The findings are important for water resource managers and water-intensive industries in the SEUS and EGS. The associations identified in the paper are valuable for enhanced drought preparedness and forecasting in the study area and potentially for global models of coupled ocean-atmosphere variability.
Precipitation from land-falling tropical cyclones (TCs) has a significant hydroclimatic influence in the southeastern United States, particularly during drought years. The frequency with which TCs ended drought conditions was examined for southeastern coastal states from Texas to North Carolina during 1895-2011. The region was divided into the Gulf Coast states (GCS) and the southeastern Atlantic coast states (ACS). The spatiotemporal patterns of tropical cyclone drought busters (TCDBs) were analyzed. Larger-scale ocean-atmosphere influences on TCDBs were examined using chi-squared analysis. The ACS experienced TCDBs more frequently and farther inland compared to the GCS. The number of TCDBs has significantly increased with time in the ACS. TCDBs numbers in the GCS did not exhibit significant increases, but the area alleviated of drought conditions increased significantly in the last 117 years. The dominant larger-scale oceanatmosphere forcing of TCDBs was a combination of a warm Atlantic Ocean ABSTRACTPrecipitation from land-falling tropical cyclones (TCs) has a significant hydroclimatic influence in the southeastern United States, particularly during drought years. The frequency with which TCs ended drought conditions was examined for southeastern coastal states from Texas to North Carolina during 1895-2011. The region was divided into the Gulf Coast states (GCS) and the southeastern Atlantic coast states (ACS). The spatiotemporal patterns of tropical cyclone drought busters (TCDBs) were analyzed. Larger-scale oceanatmosphere influences on TCDBs were examined using chi-squared analysis. The ACS experienced TCDBs more frequently and farther inland compared to the GCS. The number of TCDBs has significantly increased with time in the ACS. TCDBs numbers in the GCS did not exhibit significant increases, but the area alleviated of drought conditions increased significantly in the last 117 years. The dominant larger-scale ocean-atmosphere forcing of TCDBs was a combination of a warm Atlantic Ocean [positive Atlantic multidecadal oscillation index (AMO1)] and weak westerlies [negative North Atlantic Oscillation index (NAO2)]. AMO1 leads to an increase in the number of TCs throughout the North Atlantic basin, and NAO2 increases the likelihood of TC landfall by controlling the steering of TCs toward the southeastern United States.
The synoptic processes that end droughts are poorly understood, yet have significant climatological implications. Here we examined the spatiotemporal patterns of rapid drought cessation (RDC) in the southeastern United States during the1979-2013 warm season (April-November) for three storm types: Frontal, Tropical, and Air mass. We defined RDC as a 1 month shift in soil moisture sufficient to alleviate an existing drought. We found that 73% of all warm-season droughts were ended by RDC events and the three storm-type groups ended droughts over similar spatial areas. Frontal storms were the most frequent mechanism for RDC events, yet their occurrences significantly decreased and were negatively related to increases in Northern Hemisphere air temperatures. Projected future warming in the Northern Hemisphere suggests a continued decline in the frequency and relative contribution of Frontal storms as RDC events, potentially influencing the timing and spatial scale of drought cessation in the southeastern U.S.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.