The present human population is more than three times what it was in 1950. With that, there is an increasing demand for the consumption of fossil fuels for various anthropogenic activities. This consumption is the major source of carbon dioxide emission causing greenhouse effects leading to global warming. The dependency on fossil fuels around the globe is such that it would be hard to move away from it any time soon. Hence, we must work on strategies to improve carbon dioxide fixation as we are making advancements in clean energy technology. This review explores the natural carbon dioxide fixation pathways in plants and various microorganisms and discusses their limitations and alternative strategies. It explains what necessitates the exploration of synthetic pathways and discusses strategies and matrices to consider while evaluating various pathways. This review also discusses the recent breakthroughs in the field of nanosciences that could accelerate chemical methods of carbon dioxide fixation.
Alzheimer’s disease is a life-threatening neurodegenerative disorder. About 50 million people across the globe are affected by this disease. At final stages, this disease causes patients to lose cognitive ability, memory, and brain cells to the point of being totally dependent on other individuals for livelihood. The incidence of this disease is increasing across the world in the recent years, making the need of a better drug an urgency. Existing drugs show various side effects and natural sources of medicinal drugs are being explored. In this study, we explore the activity of natural compounds isolated through GC–MS analysis from the haustoria of palmyra palm against two major Alzheimer’s disease-causing enzymes, β-secretase and acetylcholinesterase. The binding affinity of these compounds against the target proteins and their pharmacokinetic properties were checked. Among the 37 compounds docked, 5 compounds showed good binding affinity and pharmacokinetic properties. These natural compounds showed a potential as a drug against Alzheimer’s disease. Further research is needed to study the synergistic activity of the compounds in live cells.
The pathogenic form of thermophilic Naegleria sp. i.e., Naegleria fowleri, also known as brain eating amoeba, causes primary amoebic encephalitis (PAM) with a >97% fatality rate. To date, there are no specific drugs identified to treat this disease specifically. The present antimicrobial combinatorial chemotherapy is hard on many patients, especially children. Interestingly, Naegleria fowleri has complex lipid biosynthesis pathways like other protists and also has a strong preference to utilize absorbed host lipids for generating energy. The ergosterol biosynthesis pathway provides a unique drug target opportunity, as some of the key enzymes involved in this pathway are absent in humans. Sterol 24-C Methyltransferase (SMT) is one such enzyme that is not found in humans. To select novel inhibitors for this enzyme, alkaloids and terpenoids inhibitors were screened and tested against two isozymes of SMT identified in N. gruberi (non-pathogenic) as well as its homolog found in yeast, i.e., ERG6. Five natural product derived inhibitors i.e., Cyclopamine, Chelerythrine, Berberine, Tanshinone 2A, and Catharanthine have been identified as potential drug candidates based on multiple criteria including binding affinity, ADME scores, absorption, and, most importantly, its ability to cross the blood brain barrier. This study provides multiple leads for future drug exploration against Naegleria fowleri.
Alzheimer’s disease is a life-threatening neurodegenerative disorder. About 50 million people across the globe are affected by this disease. At final stages, this disease causes patients to lose cognitive ability, memory and brain cells to the point of being totally depend on other individuals for livelihood. The incidence of this disease is increasing across the world in the recent years, making the need of a better drug an urgency. Existing drugs show various side-effects and natural sources of medicinal drugs are being explored. In this study, we explore the activity of natural compounds isolated through GCMS analysis from the haustoria of palmyra palm against two major Alzheimer’s disease-causing enzymes, β-amyloid and Acetylcholinesterase. The binding affinity of these compounds against the target proteins and their pharmacokinetic properties were checked. Among the 37 compounds docked, 5 compounds showed good binding affinity and pharmacokinetic properties. These natural compounds showed a potential as a drug against Alzheimer’s disease. Further research is needed to study the synergistic activity of the compounds in live cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.