Plant cells release ATP into their extracellular matrix as they grow, and extracellular ATP (eATP) can modulate the rate of cell growth in diverse tissues. Two closely related apyrases (APYs) in Arabidopsis (Arabidopsis thaliana), APY1 and APY2, function, in part, to control the concentration of eATP. The expression of APY1/APY2 can be inhibited by RNA interference, and this suppression leads to an increase in the concentration of eATP in the extracellular medium and severely reduces growth. To clarify how the suppression of APY1 and APY2 is linked to growth inhibition, the gene expression changes that occur in seedlings when apyrase expression is suppressed were assayed by microarray and quantitative real-time-PCR analyses. The most significant gene expression changes induced by APY suppression were in genes involved in biotic stress responses, which include those genes regulating wall composition and extensibility. These expression changes predicted specific chemical changes in the walls of mutant seedlings, and two of these changes, wall lignification and decreased methyl ester bonds, were verified by direct analyses. Taken together, the results are consistent with the hypothesis that APY1, APY2, and eATP play important roles in the signaling steps that link biotic stresses to plant defense responses and growth changes.
Self-assembled monolayers (SAMs) of alkyl thiols are frequently used to chemically functionalize gold surfaces for applications throughout materials chemistry, electrochemistry, and biotechnology. Despite this, a detailed understanding of the structure of the SAM–water interface generated from both formation and use of the SAM in an aqueous environment is elusive, and analytical measurements of the structure and chemistry of the SAM–water interface are an ongoing experimental challenge. To address this, we used neutron reflectometry (NR) to measure water association with both hydrophobic and hydrophilic SAMs under both wet and dry conditions. SAMs used for this study were made from hydrophobic decanethiol mixed with hydrophilic 11-azido-1-undecanethiol with compositions of 0–100% of the azide-terminated thiol. All SAMs were formed by conventional solution incubation of a Au substrate immersed in ethanol. Each SAM was characterized by grazing incidence angle reflection–absorption Fourier transfer infrared spectroscopy, contact angle goniometry, and electrochemical methods to confirm it was a completely formed monolayer with evidence of extensive crystalline-like domains. NR measured significant absorption of water into each SAM, ranging from 1.6 to 5.7 water molecules per alkyl thiol, when SAMs were immersed in water. Water infiltration was independent of SAM composition and terminal group hydrophilicity. These results demonstrate that water accesses defects, fluid regions, and heterogeneous domains inherent to even well-formed SAMs.
A novel imidazolium‐containing monomer, 1‐[ω‐methacryloyloxydecyl]‐3‐(n‐butyl)‐imidazolium (1BDIMA), was synthesized and polymerized using free radical and controlled free radical polymerization followed by post‐polymerization ion exchange with bromide (Br), tetrafluoroborate (BF4), hexafluorophosphate (PF6), or bis(trifluoromethylsulfonyl)imide (Tf2N). The thermal properties and ionic conductivity of the polymers showed a strong dependence on the counter‐ions and had glass transition temperatures (Tg) and ion conductivities at room temperature ranging from 10 °C to −42 °C and 2.09 × 10−7 S cm−1 to 2.45 × 10−5 S cm−1. In particular, PILs with Tf2N counter‐ions showed excellent ion conductivity of 2.45 × 10−5 S cm−1 at room temperature without additional ionic liquids (ILs) being added to the system, making them suitable for further study as electro‐responsive materials. In addition to the counter‐ions, solvent was found to have a significant effect on the reversible addition‐fragmentation chain‐transfer polymerization (RAFT) for 1BDIMA with different counter‐ions. For example, 1BDIMATf2N would not polymerize in acetonitrile (MeCN) at 65 °C and only achieved low monomer conversion (< 5%) at 75 °C. However, 1BDIMA‐Tf2N proceeded to high conversion in dimethylformamide (DMF) at 65 °C and 1BDIMABr polymerized significantly faster in DMF compared to MeCN. NMR diffusometry was used to investigate the kinetic differences by probing the diffusion coefficients for each monomer and counter‐ion in MeCN and DMF. These results indicate that the reaction rates are not diffusion limited, and point to a need for deeper understanding of the role electrostatics plays in the kinetics of free radical polymerizations. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 1346–1357
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.