Self-assembled monolayers (SAMs) of alkyl thiols are frequently used to chemically functionalize gold surfaces for applications throughout materials chemistry, electrochemistry, and biotechnology. Despite this, a detailed understanding of the structure of the SAM–water interface generated from both formation and use of the SAM in an aqueous environment is elusive, and analytical measurements of the structure and chemistry of the SAM–water interface are an ongoing experimental challenge. To address this, we used neutron reflectometry (NR) to measure water association with both hydrophobic and hydrophilic SAMs under both wet and dry conditions. SAMs used for this study were made from hydrophobic decanethiol mixed with hydrophilic 11-azido-1-undecanethiol with compositions of 0–100% of the azide-terminated thiol. All SAMs were formed by conventional solution incubation of a Au substrate immersed in ethanol. Each SAM was characterized by grazing incidence angle reflection–absorption Fourier transfer infrared spectroscopy, contact angle goniometry, and electrochemical methods to confirm it was a completely formed monolayer with evidence of extensive crystalline-like domains. NR measured significant absorption of water into each SAM, ranging from 1.6 to 5.7 water molecules per alkyl thiol, when SAMs were immersed in water. Water infiltration was independent of SAM composition and terminal group hydrophilicity. These results demonstrate that water accesses defects, fluid regions, and heterogeneous domains inherent to even well-formed SAMs.
Ultraviolet photodissociation (UVPD) has emerged as a promising tool to characterize proteins with regard to not only their primary sequences and post-translational modifications, but also their tertiary structures. In this study, three metal-binding proteins, Staphylococcal nuclease, azurin, and calmodulin, are used to demonstrate the use of UVPD to elucidate metal-binding regions via comparisons between the fragmentation patterns of apo (metal-free) and holo (metal-bound) proteins. The binding of staphylococcal nuclease to calcium was evaluated, in addition to a series of lanthanide(III) ions which are expected to bind in a similar manner as calcium. On the basis of comparative analysis of the UVPD spectra, the binding region for calcium and the lanthanide ions was determined to extend from residues 40−50, aligning with the known crystal structure. Similar analysis was performed for both azurin (interrogating copper and silver binding) and calmodulin (four calcium binding sites). This work demonstrates the utility of UVPD methods for determining and analyzing the metal binding sites of a variety of classes of proteins.
We are interested in functionalizing gold nanoparticles (AuNPs) with proteins using a biomimetic approach in which an intermediate peptide “glue” directs the orientation of a protein relative to the AuNP surface. The first step toward this goal is described in the present article. Specifically, we show that ∼5 nm AuNPs can be functionalized with a mixed self-assembled monolayer (SAM) consisting of oligo(ethylene glycol) alkanethiols terminated with either hydroxyl or azide groups, and that the resulting materials are stable and soluble in water. The azide groups on the surface of the AuNPs can be subsequently linked to alkyne-functionalized peptides via a copper-catalyzed azide–alkyne cycloaddition (click) reaction. Analysis of the resulting material by Fourier transform infrared and circular dichroism spectroscopy demonstrates that the peptide is covalently linked to the SAM and that it exists in an α-helical conformation. In addition to our intended purpose of using these highly structured, biomimetic materials to orient proteins, they may also be useful for applications involving interactions between nanoparticles and cells.
Establishing how water, or the absence of water, affects the structure, dynamics, and function of proteins in contact with inorganic surfaces is critical to developing successful protein immobilization strategies. In the present article, the quantity of water hydrating a monolayer of helical peptides covalently attached to self-assembled monolayers (SAMs) of alkyl thiols on Au was measured using neutron reflectometry (NR). The peptide sequence was composed of repeating LLKK units in which the leucines were aligned to face the SAM. When immersed in water, NR measured 2.7 ± 0.9 water molecules per thiol in the SAM layer and between 75 ± 13 and 111 ± 13 waters around each peptide. The quantity of water in the SAM was nearly twice that measured prior to peptide functionalization, suggesting that the peptide disrupted the structure of the SAM. To identify the location of water molecules around the peptide, we compared our NR data to previously published molecular dynamics simulations of the same peptide on a hydrophobic SAM in water, revealing that 49 ± 5 of 95 ± 8 total nearby water molecules were directly hydrogen-bound to the peptide. Finally, we show that immersing the peptide in water compressed its structure into the SAM surface. Together, these results demonstrate that there is sufficient water to fully hydrate a surface-bound peptide even at hydrophobic interfaces. Given the critical role that water plays in biomolecular structure and function, these results are expected to be informative for a broad array of applications involving proteins at the bio/abio interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.