Pseudomonas aeruginosa causes chronic biofilm infections, and its ability to attach to surfaces and other cells is important for biofilm formation and maintenance. Mutations in a gene called wspF, part of a putative chemosensory signal-transduction operon, have been shown to result in cell aggregation and altered colony morphology. The WspF phenotypes depend on the presence of WspR, which is a member of a family of signal transduction proteins known as response regulators. It is likely that the effect of the wspF mutation is to cause constitutive activation of WspR by phosphorylation. WspR contains a GGDEF domain known to catalyze formation of a cytoplasmic signaling molecule cyclic diguanylate (c-diGMP). We determined that purified WspR catalyzed the formation of c-diGMP in vitro and phosphorylation stimulated this activity. We observed increased cellular levels of c-diGMP and increased biofilm formation in a wspF mutant. Expression of a protein predicted to catalyze degradation of c-diGMP reversed the phenotypes of a wspF mutant and inhibited biofilm initiation by wild-type cells, indicating that the presence of c-diGMP is necessary for biofilm formation. A transcriptome analysis showed that expression levels of at least 560 genes were affected by a wspF deletion. The psl and pel operons, which are involved in exopolysaccharide production and biofilm formation, were expressed at high levels in a wspF mutant. Together, the data suggest that the wsp signal transduction pathway regulates biofilm formation through modulation of cyclic diguanylate levels.Pseudomonas aeruginosa ͉ GGDEF domain ͉ exopolysaccharide ͉ EAL domain B iofilms are surface-associated multicellular communities encased in a self-produced extracellular matrix. Existence in a biofilm provides many advantages over a planktonic (single-cell) existence, including increased resistance to predation and antimicrobial agents (1-4). Biofilms of P. aeruginosa cause chronic infections of humans with underlying predispositions (5).A number of genes involved in adherence and aggregation of P. aeruginosa, properties that are thought to be important during biofilm formation, have been identified (6-10). A mutation in one such gene, wspF, has been shown to result in increased cell aggregation and a wrinkled colony morphology (7). wspF is part of a gene cluster predicted to encode a signal transduction system similar to that which regulates swimming-mediated chemotaxis in bacteria (7). The WspF protein is homologous to CheB, a methylesterase involved in adaptation to chemotactic stimuli. Chemotaxis signal transduction systems also include response regulators called CheY. The response regulator of the Wsp chemosensory system, WspR, is a CheY homolog that contains the conserved GGDEF domain (7). These domains have been implicated in the formation of the intracellular signaling molecule cyclic diguanylate (c-diGMP) (11-15).c-diGMP was first identified in Gluconacetobacter xylinus, where it regulates production of cellulose through modulation of cellulose synthase a...
SummaryHigh levels of the intracellular signalling molecule cyclic diguanylate (c-di-GMP) supress motility and activate exopolysaccharide (EPS) production in a variety of bacterial species. In many bacteria part of the effect of c-di-GMP is on gene expression, but the mechanism involved is not known for any species. We have identified the protein FleQ as a c-di-GMPresponsive transcriptional regulator in Pseudomonas aeruginosa. FleQ is known to activate expression of flagella biosynthesis genes. Here we show that it also represses transcription of genes including the pel operon involved in EPS biosynthesis, and that this repression is relieved by c-di-GMP. Our in vivo data indicate that FleQ represses pel transcription and that pel transcription is not repressed when intracellular c-di-GMP levels are high. FleN, a known antiactivator of FleQ also participates in control of pel expression. In in vitro experiments we found that FleQ binds to pel promoter DNA and that this binding is inhibited by c-di-GMP. FleQ binds radiolabelled c-di-GMP in vitro. FleQ does not have amino acid motifs that resemble previously defined c-di-GMP binding domains. Our results show that FleQ is a new type of c-di-GMP binding protein that controls the transcriptional regulation of EPS biosynthesis genes in P. aeruginosa.
We describe how pathway engineering can be used to convert a single intermediate derived from lipid biosynthesis, fatty aldehydes, into a variety of biofuel precursors including alkanes, free fatty acids and wax esters. In cyanobacteria, long-chain acyl-ACPs can be reduced to fatty aldehydes, and then decarbonylated to alkanes. We discovered a cyanobacteria class-3 aldehyde-dehydrogenase, AldE, that was necessary and sufficient to instead oxidize fatty aldehyde precursors into fatty acids. Overexpression of enzymes in this pathway resulted in production of 50 to 100 fold more fatty acids than alkanes, and the fatty acids were secreted from the cell. Co-expression of acyl-ACP reductase, an alcohol-dehydrogenase and a wax-ester-synthase resulted in a third fate for fatty aldehydes: conversion to wax esters, which accumulated as intracellular lipid bodies. Conversion of acyl-ACP to fatty acids using endogenous cyanobacterial enzymes may allow biofuel production without transgenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.