Pseudomonas aeruginosa causes chronic biofilm infections, and its ability to attach to surfaces and other cells is important for biofilm formation and maintenance. Mutations in a gene called wspF, part of a putative chemosensory signal-transduction operon, have been shown to result in cell aggregation and altered colony morphology. The WspF phenotypes depend on the presence of WspR, which is a member of a family of signal transduction proteins known as response regulators. It is likely that the effect of the wspF mutation is to cause constitutive activation of WspR by phosphorylation. WspR contains a GGDEF domain known to catalyze formation of a cytoplasmic signaling molecule cyclic diguanylate (c-diGMP). We determined that purified WspR catalyzed the formation of c-diGMP in vitro and phosphorylation stimulated this activity. We observed increased cellular levels of c-diGMP and increased biofilm formation in a wspF mutant. Expression of a protein predicted to catalyze degradation of c-diGMP reversed the phenotypes of a wspF mutant and inhibited biofilm initiation by wild-type cells, indicating that the presence of c-diGMP is necessary for biofilm formation. A transcriptome analysis showed that expression levels of at least 560 genes were affected by a wspF deletion. The psl and pel operons, which are involved in exopolysaccharide production and biofilm formation, were expressed at high levels in a wspF mutant. Together, the data suggest that the wsp signal transduction pathway regulates biofilm formation through modulation of cyclic diguanylate levels.Pseudomonas aeruginosa ͉ GGDEF domain ͉ exopolysaccharide ͉ EAL domain B iofilms are surface-associated multicellular communities encased in a self-produced extracellular matrix. Existence in a biofilm provides many advantages over a planktonic (single-cell) existence, including increased resistance to predation and antimicrobial agents (1-4). Biofilms of P. aeruginosa cause chronic infections of humans with underlying predispositions (5).A number of genes involved in adherence and aggregation of P. aeruginosa, properties that are thought to be important during biofilm formation, have been identified (6-10). A mutation in one such gene, wspF, has been shown to result in increased cell aggregation and a wrinkled colony morphology (7). wspF is part of a gene cluster predicted to encode a signal transduction system similar to that which regulates swimming-mediated chemotaxis in bacteria (7). The WspF protein is homologous to CheB, a methylesterase involved in adaptation to chemotactic stimuli. Chemotaxis signal transduction systems also include response regulators called CheY. The response regulator of the Wsp chemosensory system, WspR, is a CheY homolog that contains the conserved GGDEF domain (7). These domains have been implicated in the formation of the intracellular signaling molecule cyclic diguanylate (c-diGMP) (11-15).c-diGMP was first identified in Gluconacetobacter xylinus, where it regulates production of cellulose through modulation of cellulose synthase a...
Over the last two decades, there have been three deadly human outbreaks of coronaviruses (CoVs) caused by SARS-CoV, MERS-CoV, and SARS-CoV-2, which has caused the current COVID-19 global pandemic. All three deadly CoVs originated from bats and transmitted to humans via various intermediate animal reservoirs. It remains highly possible that other global COVID pandemics will emerge in the coming years caused by yet another spillover of a bat-derived SARS-like coronavirus (SL-CoV) into humans. Determining the Ag and the human B cells, CD4 1 and CD8 1 T cell epitope landscapes that are conserved among human and animal coronaviruses should inform in the development of future pan-coronavirus vaccines. In the current study, using several immunoinformatics and sequence alignment approaches, we identified several human B cell and CD4 1 and CD8 1 T cell epitopes that are highly conserved in 1) greater than 81,000 SARS-CoV-2 genome sequences identified in 190 countries on six continents; 2) six circulating CoVs that caused previous human outbreaks of the common cold; 3) nine SL-CoVs isolated from bats; 4) nine SL-CoV isolated from pangolins; 5) three SL-CoVs isolated from civet cats; and 6) four MERS strains isolated from camels. Furthermore, the identified epitopes: 1) recalled B cells and CD4 1 and CD8 1 T cells from both COVID-19 patients and healthy individuals who were never exposed to SARS-CoV-2, and 2) induced strong B cell and T cell responses in humanized HLA-DR1/HLA-A*02:01 double-transgenic mice. The findings pave the way to develop a preemptive multiepitope pancoronavirus vaccine to protect against past, current, and future outbreaks.
SummaryPseudomonas aeruginosa has sets of sensory genes designated che and che2.
The native major outer membrane protein (nMOMP) from Chlamydia was purified in its trimeric form using the zwitterionic detergent Z3-14. In aliquots from this preparation, Z3-14 was exchanged for amphipol (APol) A8-35. CD analysis showed that trapping with A8-35 improved the thermostability of nMOMP without affecting its secondary structure. Recombinant MOMP (rMOMP) was also formulated with Z3-14 or A8-35. Four groups of mice were vaccinated with nMOMP/Z3-14, nMOMP/A8-35, rMOMP/Z3-14 or rMOMP/A8-35 using CpG and Montanide as adjuvants. A positive control group was inoculated intranasally with live Chlamydia and a negative control group with culture medium. Mice were challenged intranasally with live Chlamydia and protection was assessed based on changes in body weight, the weight of the lungs and the number of chlamydial inclusion forming units recovered from the lungs 10 days after the challenge. Overall, vaccines formulated with nMOMP elicited better protection than those using rMOMP. Furthermore, the protection afforded by nMOMP/A8-35 was more robust than that achieved with nMOMP/Z3-14. In contrast, no differences in protection were observed between rMOMP/Z3-14 and rMOMP/A8-35 preparations. These findings suggest that the higher protection conferred by nMOMP/A8-35 complexes most likely results from a better preservation of the native structure of MOMP and/or from a more efficient presentation of the antigen to the immune system, rather than from an adjuvant effect of the amphipol. Thus, amphipols can be used in vaccine formulations to stabilize a membrane-protein component and enhance its immunogenicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.