A second gene for autosomal dominant polycystic kidney disease was identified by positional cloning. Nonsense mutations in this gene (PKD2) segregated with the disease in three PKD2 families. The predicted 968-amino acid sequence of the PKD2 gene product has six transmembrane spans with intracellular amino- and carboxyl-termini. The PKD2 protein has amino acid similarity with PKD1, the Caenorhabditis elegans homolog of PKD1, and the family of voltage-activated calcium (and sodium) channels, and it contains a potential calcium-binding domain.
The Rubinstein-Taybi syndrome (RTS) is a well-defined syndrome with facial abnormalities, broad thumbs, broad big toes and mental retardation as the main clinical features. Many patients with RTS have been shown to have breakpoints in, and microdeletions of, chromosome 16p13.3 (refs 4-8). Here we report that all these breakpoints are restricted to a region that contains the gene for the human CREB binding protein (CBP), a nuclear protein participating as a co-activator in cyclic-AMP-regulated gene expression. We show that RTS results not only from gross chromosomal rearrangements of chromosome 16p, but also from point mutations in the CBP gene itself. Because the patients are heterozygous for the mutations, we propose that the loss of one functional copy of the CBP gene underlies the developmental abnormalities in RTS and possibly the propensity for malignancy.
Abstract-Tissue accumulation of circulating prorenin results in angiotensin generation, but could also, through binding to the recently cloned (pro)renin receptor, lead to angiotensin-independent effects, like p42/p44 mitogen-activated protein kinase (MAPK) activation and plasminogen-activator inhibitor (PAI)-1 release. Here we investigated whether prorenin exerts angiotensin-independent effects in neonatal rat cardiomyocytes. Polyclonal antibodies detected the (pro)renin receptor in these cells. Prorenin affected neither p42/p44 MAPK nor PAI-1. PAI-1 release did occur during coincubation with angiotensinogen, suggesting that this effect is angiotensin mediated. Prorenin concentrationdependently activated p38 MAPK and simultaneously phosphorylated HSP27. The latter phosphorylation was blocked by the p38 MAPK inhibitor SB203580. Rat microarray gene (nϭ4800) transcription profiling of myocytes stimulated with prorenin detected 260 regulated genes (PϽ0.001 versus control), among which genes downstream of p38 MAPK and HSP27 involved in actin filament dynamics and (cis-)regulated genes confined in blood pressure and diabetes QTL regions, like Syntaxin-7, were overrepresented. Quantitative real-time RT-PCR of 7 selected genes (Opg, Timp1, Best5, Hsp27, Col3a1, and Hk2) revealed temporal regulation, with peak levels occurring after 4 hours of prorenin exposure. This regulation was not altered in the presence of the renin inhibitor aliskiren or the angiotensin II type 1 receptor antagonist eprosartan. Finally, pilot 2D proteomic differential display experiments revealed actin cytoskeleton changes in cardiomyocytes after 48 hours of prorenin stimulation. In conclusion, prorenin exerts angiotensinindependent effects in cardiomyocytes. Prorenin-induced stimulation of the p38 MAPK/HSP27 pathway, resulting in alterations in actin filament dynamics, may underlie the severe cardiac hypertrophy that has been described previously in rats with hepatic prorenin overexpression. (Hypertension. 2006;48:564-571.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.