The implementation of large-scale containment measures by governments to contain the spread of the COVID-19 virus has resulted in large impacts to the global economy. Here, we derive a new high-frequency indicator of economic activity using empirical vessel tracking data, and use it to estimate the global maritime trade losses during the first eight months of the pandemic. We go on to use this high-frequency dataset to infer the effect of individual non-pharmaceutical interventions on maritime exports, which we use as a proxy of economic activity. Our results show widespread port-level trade losses, with the largest absolute losses found for ports in China, the Middle-East and Western Europe, associated with the collapse of specific supply-chains (e.g. oil, vehicle manufacturing). In total, we estimate that global maritime trade reduced by -7.0% to -9.6% during the first eight months of 2020, which is equal to around 206–286 million tonnes in volume losses and up to 225–412 billion USD in value losses. We find large sectoral and geographical disparities in impacts. Manufacturing sectors are hit hardest, with losses up to 11.8%, whilst some small islands developing states and low-income economies suffered the largest relative trade losses. Moreover, we find a clear negative impact of COVID-19 related school and public transport closures on country-wide exports. Overall, we show how real-time indicators of economic activity can inform policy-makers about the impacts of individual policies on the economy, and can support economic recovery efforts by allocating funds to the hardest hit economies and sectors.
Ports are located in low-lying coastal and riverine areas making them prone to the physical impacts of natural disasters. The consequential disruptions can potentially propagate through supply chains, resulting in widespread economic losses. Previous studies to quantify the risks of port disruptions have adopted various modelling assumptions about the resilience of individual ports and marine network logistics. However, limited empirical evidence is available to validate these modelling assumptions or to provide deeper understanding of the ways in which operations are adapted during and after disruptions. Here, we use vessel tracking data to analyse past port disruptions due to natural disasters, evaluating 141 incidences of disruptions across 74 ports and 27 disasters. Results show a median disruption duration of six days with a 95 th percentile of 22.2 days. All analysed events show multiple ports being affected simultaneously, challenging some of the studies that only focus on single port disruptions. Moreover, we find that the duration of the disruption scales with the severity of the event, with an increment of 1.0m storm surge or 10m/s wind speed associated with a two day increase in disruption duration. In contrast to commonplace assumptions in model studies, substitution between ports is rarely observed during short-term disruptions. On the other hand, production recapture happens in practice in many cases of port disruptions. In short, empirical vessel tracking data provides valuable insights for future modelling studies in order to better approximate the extent of the disruption and the potential resilience of the port and maritime network.
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.
Climate-induced food production shocks, like droughts, can cause food shortages and price spikes, leading to food insecurity. In 2007, a synchronous crop failure in Lesotho and South Africa—Lesotho’s sole trading partner—led to a period of severe food insecurity in Lesotho. Here, we use extreme event attribution to assess the role of climate change in exacerbating this drought, going on to evaluate sensitivity of synchronous crop failures to climate change and its implications for food security in Lesotho. Climate change was found to be a critical driver that led to the 2007 crisis in Lesotho, aggravating an ongoing decline in food production in the country. We show how a fragile agricultural system in combination with a large trade-dependency on a climatically connected trading partner can lead to a nonlinear response to climate change, which is essential information for building a climate-resilient food-supply system now and in the future.
We quantify the criticality of the world’s 1300 most important ports for global supply chains by predicting the allocation of trade flows on the global maritime transport network, which we link to a global supply-chain database to evaluate the importance of ports for the economy. We find that 50% of global trade in value terms is maritime, with low-income countries and small islands being 1.5 and 2.0 times more reliant on their ports compared to the global average. The five largest ports globally handle goods that embody >1.4% of global output, while 40 ports add >10% of domestic output of the economies they serve, predominantly small islands. We identify critical cross-border infrastructure dependencies for some landlocked and island countries that rely on specific ports outside their jurisdiction. Our results pave the way for developing new strategies to enhance the resilience and sustainability of port infrastructure and maritime trade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.