We use stellar kinematics from the latest Gaia data release (DR2) to measure the local dark matter (DM) density ρ DM in a heliocentric cylinder of radius R = 150 pc and half-height z = 200 pc. We also explore the prospect of using our analysis to estimate the DM density in local substructure by setting constraints on the surface density and scale height of a thin dark disk aligned with the baryonic disk and formed due to dissipative dark matter self-interactions. Performing the statistical analysis within a Bayesian framework for three types of tracers, we obtain ρ DM = 0.016 ± 0.010 M /pc 3 for A stars; early G stars give a similar result, while F stars yield a significantly higher value. For a thin dark disk, A stars set the strongest constraint: excluding surface densities (5-12) M /pc 2 for scale heights below 100 pc with 95% confidence. The upper bound of this constraint implies ∼ < 1% of the Milky Way DM mass is present in a dissipative dark sector. Comparing our results with those derived using Tycho-Gaia Astrometric Solution (TGAS) data, we find that the uncertainty in our measurements of the local DM content is dominated by systematic errors that arise from assumptions of our dynamical analysis in the low z region. Furthermore, there will only be a marginal reduction in these uncertainties with more data in the Gaia era. We comment on the robustness of our method and discuss potential improvements for future work.
We enlarge the set of recipes and ingredients at disposal of any poor particle physicist eager to cook up signatures from weak-scale Dark Matter models by computing two secondary emissions due to DM particles annihilating or decaying in the galactic halo, namely the radio signals from synchrotron emission and the gamma rays from bremsstrahlung. We consider several magnetic field configurations and propagation scenarios for electrons and positrons. We also provide an improved energy loss function for electrons and positrons in the Galaxy, including synchrotron losses in the different configurations, bremsstrahlung losses, ionization losses and Inverse Compton losses with an updated InterStellar Radiation Field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.