Insulin resistance is common in type 1 diabetes patients and is associated with microvascular complications. eGDR, as an insulin resistance marker, provides more useful information than other classical variables such as insulin requirements.
A series of 3,4-diaryloxazolones were prepared and evaluated for their ability to inhibit cyclooxygenase-2 (COX-2). Extensive structure-activity relationship work was carried out within this series, and a number of potent and selective COX-2 inhibitors were identified. The replacement of the methyl sulfone group on the 4-phenyl ring by a sulfonamide moiety resulted in compounds with superior in vivo antiinflammatory properties. In the sulfonamide series, the introduction of a methyl group at the 5-position of the oxazolone ring gave rise to very COX-2-selective compounds but with decreased in vivo activity. Selected 3,4-diaryloxazolones exhibited excellent activities in experimental models of arthritis and hyperalgesia. The in vivo activity of these compounds was confirmed with the evaluation of their antipyretic effectiveness and their ability to inhibit migration of proinflammatory cells. As expected from their COX-2 selectivity, most of the active compounds lacked gastrointestinal toxicity in vivo in rats after a 4-day treatment of 100 mg/kg/day. Within this novel series, sulfonamides 9-11 have been selected for further preclinical evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.