Recent studies have indicated a calcium-activated large conductance potassium channel in rat brain mitochondrial inner membrane (mitoBK channel). Accordingly, we have characterized the functional and pharmacological profile of a BK channel from rat brain mitochondria in the present study. Brain mitochondrial inner membrane preparations were subjected to SDS-PAGE analysis and channel protein reconstitution into planar lipid bilayers. Western blotting and antibodies directed against various cellular proteins revealed that mitochondrial inner membrane fractions did not contain specific proteins of the other subcellular compartments except a very small fraction of endoplasmic reticulum. Channel incorporation into planar lipid bilayers revealed a voltage dependent 211 pS potassium channel with a voltage for half activation (V(1/2)) of 11.4±1.1mV and an effective gating charge z(d) of 4.7±0.9. Gating and conducting behaviors of this channel were unaffected by the addition of 2.5mM ATP, and 500 nM charybdotoxin (ChTx), but the channel appeared sensitive to 100 nM iberiotoxin (IbTx). Adding 10mM TEA at positive potentials and 10mM 4-AP at negative or positive voltages inhibited the channel activities. These results demonstrate that the mitoBK channel, present in brain mitochondrial inner membrane, displays different pharmacological properties than those classically described for plasma membrane, especially in regard to its sensitivity to iberiotoxin and charybdotoxin sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.