Background. Attention-deficit hyperactivity disorder (ADHD) is one of the most common psychiatric disorders among children. The aim of this study was to evaluate risk factors for ADHD in children. Method. In this case-control study, 404 children between 4 and 11 years old were selected by cluster sampling method from preschool children (208 patients as cases and 196 controls). All the participants were interviewed by a child and adolescent psychiatrist to survey risk factors of ADHD. Results. Among cases, 59.3% of children were boys and 38.4% were girls, which is different to that in control group with 40.7% boys and 61.6% girls. The chi-square showed statistically significance (P value < 0.0001). The other significant factors by chi-square were fathers' somatic or psychiatric disease (P value < 0.0001), history of trauma and accident during pregnancy (P value = 0.039), abortion proceeds (P value < 0.0001), unintended pregnancy (P value < 0.0001), and history of head trauma (P value < 0.0001). Conclusions. Findings of our study suggest that maternal and paternal adverse events were associated with ADHD symptoms, but breast feeding is a protective factor.
Attention-deficit hyperactivity disorder (ADHD) is a common psychiatric disorder in children which manifests with hyperactivity, impulsivity, and/or inattention. Several drugs are used in treatment of ADHD. Stimulants, atomoxetine, anti-depressants, and bupropion are common medications used in the treatment of ADHD. Stimulants are widely used as the first line treatment in children with ADHD. Their mechanism of action is the release of dopamine and norepinephrine in central nervous system. Methylphenidate is the most common stimulant used for the treatment of ADHD. Methylphenidate significantly reduces ADHD symptoms in children both at home and school and improves their social skills. Methylphenidate is safe in healthy children and has shown to have no cardiac side effects in these patients. Other medications include: Atomoxetine, Amphetamines, Clonidine, Melatonin, and anti-depressants. Effects, side effects, and mechanism of action these drugs have been discussed in this paper.
Introduction:General anesthesia is required for Electroconvulsive Therapy (ECT) and it is usually provided by a hypnotic agent. The seizure duration is important for the treatment, and it is usually accompanied by severe hemodynamic changes. The aim of this study was to compare the effects of sodium thiopental versus Propofol on seizure duration and hemodynamic variables during ECT.Methods:A number of 100 patient-sessions of ECT were included in this randomized clinical trial. The initial hemodynamic state of each patient was recorded. Anesthesia was induced by Sodium thiopental in the 1st group and with Propofol in 2nd group. All the patients received the muscle relaxant succinylcholine. The hemodynamic variables after seizure and seizure duration were recorded. The data were analyzed through SPSS 20 and independent t-test. P<0.05 was considered significant.Results:The mean duration of seizure in the sodium thiopental group was significantly longer than the Propofol group (40.3±16.6 sec versus 32±11.3 sec) (P=0.001). There was no statistically significant difference between the mean energy level applied in the two groups (20.5±3.81 joules in the sodium thiopental versus 20.2±3.49 joules in the Propofol group). The mean systolic and diastolic blood pressure at all times after seizure and mean heart rate at 3 and 5 minutes after seizure were significantly lower in Propofol than sodium thiopental groups.Discussion and Conclusion:Propofol provides a more stable hemodynamic state for the ECT procedures, and its use is highly preferred over sodium thiopental in patients with cardiovascular disease.
The prevalence of Alzheimer's disease (AD) is higher among type 2 diabetes mellitus (T2DM) patients. In T2DM patients, the progression of AD is more rapid. Furthermore, several pathophysiological pathways are common to AD and T2DM. Humanin is a recently introduced, mitochondrial-derived peptide with neuroprotective effects. Humanin can alter the mechanisms involved in AD and T2DM pathogenesis. Insulin resistance as well as oxidative stress has been shown to be associated with increased amyloid deposition in brain neurons and islet beta cells. Moreover, advanced glycation end products and lipid metabolism disorders are common pathways of oxidative stress and low-grade systemic inflammation in AD and T2DM. These common pathways may explain AD and T2DM pathogenesis and suggest common treatments for both diseases. Treatments for T2DM and AD attempt to slow cognitive decline, and recent investigations have focused on agents that may alter pathways common to AD and T2DM pathogenesis. Non-steroidal antiinflammatory drugs, such as interleukin-1 antagonists and statins, are possible drug candidates for both AD and T2DM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.