Diabetes mellitus during pregnancy is associated with an increased risk of multiple congenital anomalies in progeny. There are sufficient evidence suggesting that the children of diabetic women exhibit intellectual and behavioral abnormalities accompanied by modification of hippocampus structure and function. Although, the exact mechanism by which maternal diabetes affects the developing hippocampus remains to be defined. Multiple biological alterations, including hyperglycemia, hyperinsulinemia, oxidative stress, hypoxia, and iron deficiency occur in pregnancies with diabetes and affect the development of central nervous system (CNS) of the fetus. The conclusion from several studies is that disturbance in glucose and insulin homeostasis in mothers and infants are major teratogenic factor in the development of CNS. Insulin and Insulin-like growth factor-1 (IGF-1) are two key regulators of CNS function and development. Insulin and IGF-1 receptors (IR and IGF1R, respectively) are distributed in a highly specific pattern with the high density in some brain regions such as hippocampus. Recent researches have clearly established that maternal diabetes disrupts the regulation of both IR and IGF1R in the hippocampus of rat newborn. Dissecting out the mechanisms responsible for maternal diabetes-related changes in the development of hippocampus is helping to prevent from impaired cognitive and memory functions in offspring.
There is sufficient evidence that diabetes during pregnancy is associated with a higher risk of neurodevelopmental anomalies including learning deficits, behavioral problems and motor dysfunctions in the offspring. Synaptophysin (SYP) is an integral membrane protein of synaptic vesicles and is considered as a marker for synaptogenesis and synaptic density. This study aimed to examine the effects of maternal diabetes in pregnancy on the expression and localization of SYP in the developing rat cerebellum. Wistar female rats were maintained diabetic from a week before pregnancy through parturition and male offspring was euthanized at postnatal day (P) 0, 7, and 14. The results revealed a significant down-regulation in the mRNA expression of SYP in the offspring born to diabetic animals at both P7 and P14 (P < 0.05 each). One week after birth, there was a significant reduction in the localization of SYP expression in the external granular (EGL) and in the molecular (ML) layers of neonates born to diabetic animals (P < 0.05 each). We also found a marked decrease in the expression of SYP in all of the cerebellar cortical layers of STZ-D group pups at P14 (P < 0.05 each). Moreover, our results revealed no significant changes in either expression or localization of SYP in insulin-treated group pups when compared with the controls (P ≥ 0.05 each). The present study demonstrated that maternal diabetes has adverse effects on the synaptogenesis in the offspring's cerebellum. Furthermore, the rigid maternal blood glucose control in the most cases normalized these negative impacts.
Diabetes during pregnancy causes neurodevelopmental and neurocognitive abnormalities in offspring. Insulin and insulin-like growth factor-1 (IGF-1) are important regulators of developmental and cognitive functions in the central nervous system. We examined the effects of maternal diabetes on insulin-like growth factor-1 receptor (IGF-1R) and insulin receptor (InsR) expression in the developing rat hippocampus. Female rats were maintained diabetic from a week before pregnancy through parturition and male offspring was killed at P0, P7, and P14. We found a significant bilateral upregulation of both IGF-1R and InsR transcripts in the hippocampus of pups born to diabetic mothers at P0, as compared to controls. However, at the same time point, the results of western blot analysis revealed only a slight change in their protein levels. At P7, there was a marked bilateral reduction in mRNA expression and protein levels of IGF-1R, although not of InsR in the diabetic group. We also found a downregulation in IGF1-R transcripts, especially in left hippocampus of the diabetic group at P14. Moreover, at the same time point, InsR expression was significantly decreased in both hippocampi of diabetic newborns. When compared with controls, we did not find any difference in hippocampal IGF-1R or InsR mRNA and protein levels in the insulin-treated group. The present study revealed that diabetes during pregnancy strongly influences the regulation of both IGF-1R and InsR in the right/left developing hippocampi. Furthermore, the rigid control of maternal glycaemia by insulin administration normalized these effects.
Sex differences and laterality of rat hippocampus with respect to insulin-like growth factor-1 receptor (IGF-1R) and insulin receptor (InsR) expression as two important contributors to/regulators of developmental and cognitive functions were examined using real-time PCR and western blot analysis at P0, P7 and P14. Expression of the IGF-1R gene was lowest at P0 in all studied hippocampi. In males, we found the highest expression at P7 in the right hippocampus, and at P14 in the left one. In contrast, the peaked IGF-1R expression occurred at P7 in female hippocampi independent of laterality. Hippocampal InsR expression in males decreased significantly between P0 and P7, followed by a marked upregulation at P14. Conversely, the expression of InsR in females peaked at P7 and then decreased again significantly at P14. We found significant interhemispheric differences in IGF-1R mRNA levels in both male and female hippocampi at different time points. In contrast, we only found significant interhemispheric differences in InsR mRNA expression in P14 male rats, with higher values in the left hippocampus. Interestingly, changes in mRNA expression and in protein levels followed the same developmental pattern, indicating that IGF-1R and InsR transcription is not subject to modulatory effects during the first two weeks of development. These findings indicate that there are prominent interhemispheric and sex differences in IGF-1R and InsR expression in the developing rat hippocampus, suggesting a probable mechanism for the control of gender and laterality differences in development and function of the hippocampus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.