Combinations of liquid crystals and materials with unique features as well as properties at the nanoscale are reviewed. Particular attention is paid to recent developments, i.e., since 2007, in areas ranging from liquid crystal-nanoparticle dispersions to nanomaterials forming liquid crystalline phases after surface modification with mesogenic or promesogenic moieties. Experimental and synthetic approaches are summarized, design strategies compared, and potential as well as existing applications discussed. Finally, a critical outlook into the future of this fascinating field of liquid crystal research is provided.
Liquid crystal nanoscience, a field exploring the mutually beneficial combination of the unique properties of nanoscale materials and fluid, yet ordered liquid crystalline phases, is increasingly focusing on semiconductor quantum dots. In one major research thrust, the anisotropic properties of the liquid crystal host are sought to facilitate the assembly of quantum dots into arrays, in another, both size-and shape-dependent optical and electronic properties of quantum dots are used to manipulate optical, electro-optical and alignment properties of liquid crystalline materials. This feature article reviews recent accomplishments and new insights in this fascinating area of soft matter nanocomposites including work from our laboratory on a series of CdSe and CdTe quantum dots as additives in nematic liquid crystal hosts.
We here report on the optical, alignment and electro-optic properties of a nematic liquid crystal affected by the presence of semiconductor CdSe magic-sized nanocrystals (MSNCs). Three single-sized CdSe samples were tested, exhibiting bright bandgap photoluminescence (PL) with l max z 463 nm and $10 nm full width at half-maximum (fwhm). The three quantum dot (QD) samples were passivated with a monolayer of myristic acid. Two of them (QD1 and QD2) only vary in the amount of defects as indicated by different bandgap and deep trap PL. The third MSNC sample (QD3) is compositionally different, doped with Zn. These MSNCs with almost identical sizes were doped at different concentrations (1-5 wt%) into the nematic phase of 5-n-heptyl-2-(4-n-octyloxyphenyl)-pyrimidine (LC1). Only QD3 showed the formation of birefringent stripes surrounded by areas of homeotropic alignment between plain glass slides at all concentrations as observed for many other nanoparticledoped nematic liquid crystals reported earlier by our group. In polyimide-coated glass slides favouring planar orientation of the nematic director, planar alignment was observed. Surprisingly, only the Zndoped magic-sized QD3 quantum dots (CdSe@Zn) significantly lower the dielectric anisotropy as well as the splay elastic constant of the nematic host, despite identical size and surface functionality, which highlights the tremendous effect of the nanocrystal core composition on the electro-optic properties of the nematic host. In addition, fluorescence confocal (polarizing) microscopy studies show the director field within and around the birefringent stripes and confirm locally elevated concentrations or aggregates of the MCNC that are otherwise randomly distributed in the nematic host.
We examine for the first time how chemically and thermally stable gold nanoparticles (NPs), prepared by a silane conjugation approach, affect both the thermal and the electro-optical properties of a nematic liquid crystal (LC), when doped at concentrations ranging from 0.25 to 7.5 wt%. We find that the octadecylsilane-conjugated gold NPs stabilize both the enantiotropic nematic and the monotropic smectic-A phases of the LC host with a maximum stabilization of 2 ° C for the nematic and 3.5 ° C for the smectic-A phases for the mixture containing 1 wt% of the silanized particles. The same mixture shows the lowest values for the Fréedericksz transition threshold voltage and the highest value for the dielectric anisotropy. Generally, all NP-containing mixtures, except mixtures with NP concentrations exceeding 5 wt%, reduce the threshold voltage, increase the dielectric anisotropy and reduce both rise and decay time; the latter particularly at temperatures at least 10 ° C below the isotropic–nematic phase transition on cooling.
Novel levofloxacin-containing hybrids carrying a 5-(nitroaryl)-1,3,4-thiadiazol-2-yl group were synthesized and evaluated in vitro against Gram-positive and Gram-negative bacteria. Preliminary data indicated that levofloxacin-nitrofuran and levofloxacin-nitroimidazole hybrids have a potent activity against Gram-positive organisms with enhanced anti-staphylococcal activity compared with the parent quinolone (N-desmethyl levofloxacin).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.