Clay is of great interest as a 3D printing material thanks to its ease of use, recyclability and reusability. This paper analyses the technical aspects of the whole printing process. The behaviour of 3D printing clay is studied with respect to the environment and its specific application as a temporary or definitive formwork system for cement parts. The study addresses the performance of clay and the loss of its properties and characteristics according to the type of protection, whether it is in direct contact with air or cement, or protected with plastics, metal sheets, or combinations of both. A 3D printing system with various printers and 3D models has been considered, observing a direct relationship between the prototype shape, extrusion process and resulting material. The most important variables in 3D printing have been considered: layer height, line thickness, base definition, total model height, overhang angles, overlap between layers, etc. The main technical aspects have been analysed such as raw material properties, kneading, process control, post-treatments and material hardening. As a natural material, clay can be reused indefinitely under certain conditions to be part of a circular economy with low energy consumption and minimal resources. It is concluded that the option of using ceramics in 3D printing for very diverse uses in the architecture, engineering & construction (AEC) sector is very promising due to their ease of implementation, recycling capability and suitability to different environments.
The construction industry has embraced digitisation and industrialisation in response to the need to increase its productivity, optimise material consumption and improve workmanship. Additive manufacturing (AM), more widely known as 3D printing, has driven substantial progress in these respects in other industries, and a number of national and international projects have helped to introduce the technique to the construction industry. As with other innovative processes not covered by uniform standards, appropriate assessments and testing methodologies to control the quality of the 3D-printed end products, while not obligatory, are advisable. This article shows that regulation is not an obstacle to the use of an innovative product, such as 3D printing, by proposing quality-control tests and an assessment methodology, in the understanding that standardisation ensures the viability of a technology. The information, including the methods and results, is based on the authors’ experiences in the development of three research projects pertaining to 3D printing. This paper also discusses whether the performance of the materials used in 3D printing could be superior to traditional ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.