We report an innovative photoelectrochemical process (PEC) based on graphite electrode modified with electroactive polyvinylpyridine bearing osmium complex (Os-PVP). The system relies on the in situ enzymatic generation of CdS quantum dots (QDs). Alkaline phosphatase (ALP) catalyzes the hydrolisis of sodium thiophosphate (TP) to hydrogen sulfide (H2S) which in the presence Cd(2+) ions yields CdS semiconductor nanoparticles (SNPs). Irradiation of SNPs with the standard laboratory UV-illuminator (wavelength of 365 nm) results in photooxidation of 1-thioglycerol (TG) mediated by Os-PVP complex on the surface of graphite electrode at applied potential of 0.31 V vs. Ag/AgCl. A novel immunoassay based on specific enzyme linked immunosorbent assay (ELISA) combined with the PEC methodology was developed. Having selected the affinity interaction between bovine serum albumine (BSA) with anti-BSA antibody (AB) as a model system, we built the PEC immunoassay for AB. The new assay displays a linear range up to 20 ngmL(-1) and a detection limit (DL) of 2 ngmL(-1) (S/N=3) which is lower 5 times that of the traditional chromogenic ELISA test employing p-nitro-phenyl phosphate (pNPP).
Electrochemical detection strategies employing semiconductor quantum dots (QDs) open up new opportunities for highly sensitive detection of biological targets. We designed a new assay based on microbead linked enzymatic generation of CdS QDs (Microbead QD-ELISA) and employed it in optical and electrochemical affinity assays for the cancer biomarker superoxide dismutase 2 (SOD2). Biotinylated antibodies against SOD2 were immobilized on the surface of polyvinyl chloride microbeads bearing streptavidin. In order to prevent any non-specific adsorption the microbeads were further blocked with bovine serum albumin. The analyte, SOD2 was captured on microbeads and labeled with alkaline phosphatase-conjugated antibody linked with mouse antibody against SOD2. Hydrolysis of para-nitrophenylphosphate by immobilized alkaline phosphatase triggered the rapid formation of phosphate-stabilized CdS QDs on the surface of microbeads. The resulting semiconductor nanoparticles were detected by fluorescence spectroscopy, microscopy, and square-wave voltammetry (SWV). The electrochemical assay based on the detection with square-wave voltammograms of Cd ions originating from immobilized CdS QDs showed linearity up to 45 ng mL, and the limit of SOD2 detection equal to 0.44 ng mL (1.96 × 10 M). This detection limit is lower by 2 orders of magnitude in comparison with that of other previously published assays for superoxide dismutase. The electrochemical assay was validated with HepG2 (Human hepatocellular carcinoma) cell lysate containing SOD2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.