The Nc-Spain 1H isolate of Neospora caninum, which was newly obtained from the brain of a congenitally asymptomatic infected calf, demonstrated a reduced in vitro tachyzoite yield and viability rate, as well as low virulence in mouse models. The objective of the present study was to determine the ability of this isolate to induce foetal death in a pregnant bovine model. For this purpose, 13 naïve pregnant heifers were divided into three groups and were experimentally challenged with either 107 tachyzoites of Nc-1 (group 1, n = 5), Nc-Spain 1H (group 2, n = 5) isolates or phosphate-buffered saline (group 3, n = 3) intravenously at 70 days of gestation. After inoculation, pregnancy was monitored and dams were sacrificed when foetal death was detected. The remaining animals were slaughtered at 45 days post-infection. Maternal and foetal samples were collected for examination by histology and parasite DNA detection. Parasitaemia, specific anti-N. caninum IgG and interferon γ responses were also studied. At 3–4 weeks after infection, foetal death was detected in 3 out of 5 Nc-1-infected dams. However, no evidence of foetal death was observed in either Nc-Spain 1H-infected or control groups during the period studied. The most severe histopathological lesions were observed in the placenta and foetal organs from Nc-1-infected cattle that exhibited foetal death. It was in these animals that N. caninum DNA was more frequently detected. Parasitaemia was observed in all Nc-1-infected dams and in only 3 out of 5 Nc-Spain 1H-infected animals. The magnitude of the immune response was significantly higher in the Nc-1-inoculated group than in the group inoculated with the Nc-Spain 1H isolate. These data reveal the reduced virulence of the Nc-Spain 1H isolate in cattle.
Neospora caninum is one of the main causes of abortion in cattle, and recent studies have highlighted its relevance as an abortifacient in small ruminants. Vaccines or drugs for the control of neosporosis are lacking. Bumped kinase inhibitors (BKIs), which are ATP-competitive inhibitors of calcium dependent protein kinase 1 (CDPK1), were shown to be highly efficacious against several apicomplexan parasites in vitro and in laboratory animal models. We here present the pharmacokinetics, safety and efficacy of BKI-1553 in pregnant ewes and foetuses using a pregnant sheep model of N. caninum infection. BKI-1553 showed exposure in pregnant ewes with trough concentrations of approximately 4 μM, and of 1 μM in foetuses. Subcutaneous BKI-1553 administration increased rectal temperatures shortly after treatment, and resulted in dermal nodules triggering a slight monocytosis after repeated doses at short intervals. BKI-1553 treatment decreased fever in infected pregnant ewes already after two applications, resulted in a 37–50% reduction in foetal mortality, and modulated immune responses; IFNγ levels were increased early after infection and IgG levels were reduced subsequently. N. caninum was abundantly found in placental tissues; however, parasite detection in foetal brain tissue decreased from 94% in the infected/untreated group to 69–71% in the treated groups. In summary, BKI-1553 confers partial protection against abortion in a ruminant experimental model of N. caninum infection during pregnancy. In addition, reduced parasite detection, parasite load and lesions in foetal brains were observed.
Early Neospora caninum infection dynamics were investigated in pregnant heifers intravenously inoculated with PBS (G-Control) or 107 tachyzoites of high (G-NcSpain7)- or low (G-NcSpain1H)-virulence isolates at 110 days of gestation. Serial culling at 10 and 20 days post-infection (dpi) was performed. Fever was detected at 1 dpi in both infected groups (P < 0.0001), and a second peak was detected at 3 dpi only in G-NcSpain7 (P < 0.0001). At 10 dpi, Nc-Spain7 was detected in placental samples from one animal related to focal necrosis, and Nc-Spain7 transmission was observed, although no foetal lesions were associated with this finding. The presence of Nc-Spain1H in the placenta or foetuses, as well as lesions, were not detected at 10 dpi. At 20 dpi, G-NcSpain7 animals showed almost 100% positive placental tissues and severe focal necrosis as well as 100% transmission. Remarkably, foetal mortality was detected in two G-NcSpain7 heifers. Only one animal from G-NcSpain1H presented positive placental samples. No foetal mortality was detected, and lesions and parasite transmission to the foetus were not observed in this group. Finally, 100% of G-NcSpain7 heifers at 20 dpi presented specific antibodies, while only 60% of G-NcSpain1H animals presented specific antibodies at 20 dpi. In addition, earlier seroconversion in G-Nc-Spain7 was observed. In conclusion, tachyzoites from Nc-Spain7 reached the placenta earlier and multiplied, leading to lesion development, transmission to the foetus and foetal mortality, whereas Nc-Spain1H showed delayed infection of the placenta and no lesional development or transmission during early infection.
Live vaccines have emerged as one of the most potentially cost-effective measures for the control of bovine neosporosis. Previous studies have shown that Nc-Spain 1H is a naturally attenuated isolate of Neospora caninum and that immunisation with live Nc-Spain 1H tachyzoites generated a protective immune response in mice. The aim of this study was to evaluate the safety and efficacy of immunisation in cattle. N. caninum-seronegative heifers were immunised subcutaneously twice with 107 live Nc-Spain 1H tachyzoites prior to artificial insemination. No adverse reactions or negative effects on reproductive parameters were recorded following immunisation. In immunised and non-challenged heifers, no foetal deaths were observed, and none of the calves was congenitally infected. The efficacy against N. caninum-associated foetal death and vertical transmission was determined after challenge with high doses of the Nc-1 isolate at 70 and 135 days of gestation, respectively. After the challenge in early gestation, the immunisation induced a protection of 50% against foetal death. In addition, the microsatellite analysis performed in PCR-positive tissue samples from foetuses that died after challenge infection showed that the profiles corresponded to the challenge isolate Nc-1. A degree of protection against vertical transmission was observed after challenge at mid-gestation; calves from immunised heifers showed significantly lower pre-colostral Neospora-specific antibody titres than calves from the non-immunised/challenge group (P < 0.05). Strong antibody and interferon gamma responses were induced in the immunised heifers. This study indicates that the immunisation before pregnancy with the Nc-Spain 1H vaccine isolate appeared to be safe and reduced the occurrence of N. caninum-associated abortion and vertical transmission in experimentally infected cattle. In light of these encouraging results, the next step for testing this live attenuated candidate should be the assessment of its efficacy and safety in naturally infected cattle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.