A simulation of the cooling of electronic devices was carried out by means of microchannels, using water as a coolant to dissipate the heat generated from a computer processor, and thus stabilize its optimum operating temperature. For the development of this study, computational fluid mechanics modeling was established in order to determine the temperature profiles, pressure profiles, and velocity behavior of the working fluid in the microchannel. In the results of the study, the operating temperatures of the computer processor were obtained, in the ranges of 303 K to 307 K, with fluid velocities in the microchannels of 5 m/s, a pressure drop of 633.7 kPa, and a factor of safety of the design of the microchannel of 15. From the results, the improvement of the heat transfer in a cooling system of electronic devices was evidenced when using a coolant as a working fluid compared to the cooling by forced air flow traditional.
ABSTRAK: Simulasi penyejukan alatan elektronik telah dibina menggunakan saluran mikro, di samping air sebagai agen penyejuk bagi menghilangkan haba yang terhasil dari pemproses komputer, dan penstabil pada suhu operasi optimum. Kajian ini mengenai model komputasi mekanik bendalir bagi menentukan profil suhu, profil tekanan, dan halaju perubahan bendalir dalam saluran mikro. Dapatan kajian menunjukkan suhu operasi pemproses komputer adalah pada julat suhu 303 K sehingga 307 K, dengan halaju bendalir dalam saluran mikro adalah pada kelajuan 5 m/s, penurunan tekanan sebanyak 633.7 kPa, dan faktor keselamatan 15 bagi reka bentuk saluran mikro. Ini menunjukkan terdapat kenaikan pemindahan haba bagi sistem penyejukan alatan elektronik ini, terutama apabila cecair digunakan sebagai penyejuk haba berbanding kaedah tradisi iaitu dengan mengguna pakai aliran udara sebagai agen penyejuk.
Efficient water supply systems are necessary for the development and sustainability of human societies. One relevant aspect of these systems is the metering function, recorded employing water meters, which determines the charges levied to the clients and estimates the water losses in the network. Inaccurate measurements are detrimental for both the client and the supplier. For allowing more precise metering, one option is to use an air volume reducing device, an accessory similar to a check valve that minimizes the air volume entrapped in the pipelines, thus improving metering accuracy. This research used an experimental design to determine the influence of four factors and their interactions on the pressure drop across these devices as a preliminary step for allowing their extended use on low-pressure water supply systems. The results showed that the diameter, the spring stiffness, and the flow rate are significant factors in the pressure drop. The shape of the valve stem is statistically significant only when interacting with other factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.