patients with different neurological outcomes. Methods: We studied 49 patients who had suffered a severe TBI and 10 healthy control subjects using 18F-FDG-PET. The patients were divided into three groups: the MCS&VS group (n=17), which included patients who were in a vegetative or a minimally conscious state; the In-PTA group (n=12), which included patients in post-traumatic amnesia (PTA); and the Out-PTA group (n=20), which included patients who had recovered from PTA. SPM5 software was used to determine the metabolic differences between the groups. FDG-PET images were normalized and four regions of interest were generated around the thalamus, precuneus and the frontal and temporal lobes. The groups were parameterized using the Student's T-test. Principal component analysis was used to obtain an intensityestimated-value per subject to correlate the function between the structures.Results: Differences in glucose metabolism in all structures were related to the neurological outcome, and the most severe patients showed the most severe hypometabolism. We also found a significant correlation between the cortico-thalamocortical metabolism in all groups. Conclusions: Voxel-based analysis suggests a functional correlation between these four areas and decreased metabolism was associated with less favorable outcome. Higher levels of activation of the corticocortical connections appear to be related to better neurological conditions. Differences in the thalamo-cortical correlations between patients and controls may be related to traumatic dysfunction due to focal or diffuse lesions.3
Background: Fibromyalgia (FM) is characterized by chronic pain and fatigue, among other manifestations, thus advising interventions that do not aggravate these symptoms. The main purpose of this study is to analyse the effect of low-pressure hyperbaric oxygen therapy (HBOT) on induced fatigue, pain, endurance and functional capacity, physical performance and cortical excitability when compared with a physical exercise program in women with FM. Methods: A total of 49 women with FM took part in this randomized controlled trial. They were randomly allocated to three groups: physical exercise group (PEG, n = 16), low-pressure hyperbaric oxygen therapy group (HBG, n = 17) and control group (CG, n = 16). Induced fatigue, perceived pain, pressure pain threshold, endurance and functional capacity, physical performance and cortical excitability were assessed. To analyse the effect of the interventions, two assessments, that is, pre and post intervention, were carried out. Analyses of the data were performed using two-way mixed multivariate analysis of variance. Results: The perceived pain and induced fatigue significantly improved only in the HBG ( p < 0.05) as opposed to PEG and CG. Pressure pain threshold, endurance and functional capacity, and physical performance significantly improved for both interventions ( p < 0.05). The cortical excitability (measured with the resting motor threshold) did not improve in any of the treatments ( p > 0.05). Conclusions: Low-pressure HBOT and physical exercise improve pressure pain threshold, endurance and functional capacity, as well as physical performance. Induced fatigue and perceived pain at rest significantly improved only with low-pressure HBOT. Trial registration: ClinicalTrials.gov identifier NCT03801109.
In this paper, two mHealth applications are introduced, which can be employed as the terminals of bigdata based health service to collect information for electronic medical records (EMRs). The first one is a hybrid system for improving the user experience in the hyperbaric oxygen chamber by 3D stereoscopic virtual reality glasses and immersive perception. Several HMDs have been tested and compared. The second application is a voice interactive serious game as a likely solution for providing assistive rehabilitation tool for therapists. The recorder of the voice of patients could be analysed to evaluate the long-time rehabilitation results and further to predict the rehabilitation process.
Lull Noguera, N.; Noé, E.; Lull Noguera, JJ.; Garcia Panach, J.; Chirivella, J.; Ferri, J.; López-Aznar, D.... (2010). Voxel-based statistical analysis of thalamic glucose metabolism in traumatic brain injury: relationship with consciousness and cognition. Brain Injury. 24(9): 1098-1107. doi:10.3109/02699052.2010.494592. XML Template (2010) [4.6.2010 [ AbstractObjective: To study the relationship between thalamic glucose metabolism and neurological outcome after severe traumatic brain injury (TBI). Methods: Forty-nine patients with severe and closed TBI and 10 healthy control subjects with 18 F-FDG PET were studied. Patients were divided into three groups: MCS&VS group (n ¼ 17), patients in a vegetative or a minimally conscious state; In-PTA group (n ¼ 12), patients in a state of post-traumatic amnesia (PTA); and Out-PTA group (n ¼ 20), patients who had emerged from PTA. SPM5 software implemented in MATLAB 7 was used to determine the quantitative differences between patients and controls. FDG-PET images were spatially normalized and an automated thalamic ROI mask was generated. Group differences were analysed with two sample voxel-wise t-tests. Results: Thalamic hypometabolism was the most prominent in patients with low consciousness (MCS&VS group) and the thalamic hypometabolism in the In-PTA group was more prominent than that in the Out-PTA group. Healthy control subjects showed the greatest thalamic metabolism. These differences in metabolism were more pronounced in the internal regions of the thalamus. Conclusions: The results confirm the vulnerability of the thalamus to suffer the effect of the dynamic forces generated during a TBI. Patients with thalamic hypometabolism could represent a sub-set of subjects that are highly vulnerable to neurological disability after TBI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.