Odor classification by a robot equipped with an electronic nose (e-nose) is a challenging task for pattern recognition since volatiles have to be classified quickly and reliably even in the case of short measurement sequences, gathered under operation in the field. Signals obtained in these circumstances are characterized by a high-dimensionality, which limits the use of classical classification techniques based on unsupervised and semi-supervised settings, and where predictive variables can be only identified using wrapper or post-processing techniques. In this paper, we consider generative topographic mapping through time (GTM-TT) as an unsupervised model for time-series inspection, based on hidden Markov models regularized by topographic constraints. We further extend the model such that supervised classification and relevance learning can be integrated, resulting in supervised GTM-TT. Then, we evaluate the suitability of this new technique for the odor classification problem in robotics applications. The performance is compared with classical techniques as nearest neighbor, as an absolute baseline, support vector machine and a recent time-series kernel approach, demonstrating the eligibility of our approach for high-dimensional data. Additionally, we exploit the learning system introduced in this work, providing a measure of the relevance of each sensor and individual time points in the classification process, from which important information can be extracted.
The detection of object edges in images is a crucial step employed in a vast amount of computer vision applications, for which a series of different algorithms has been developed in the last decades. This paper proposes a new edge detection method based on quantum information, which is achieved in two main steps: (i) an image enhancement stage that employs the quantum superposition law and (ii) an edge detection stage based on the probability of photon arrival to the camera sensor. The proposed method has been tested on synthetic and real images devoted to agriculture applications, where Fram & Deutsh criterion has been adopted to evaluate its performance. The results show that the proposed method gives better results in terms of detection quality and computation time compared to classical edge detection algorithms such as Sobel, Kayyali, Canny and a more recent algorithm based on Shannon entropy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.