The emergence of bacteria resistant to antibiotics and the resulting infections are increasingly becoming a public health issue. Multidrug-resistant (MDR) bacteria are responsible for infections leading to increased morbidity and mortality in hospitals, prolonged time of hospitalization, and additional burden to financial costs. Therefore, there is an urgent need for novel antibacterial agents that will both treat MDR infections and outsmart the bacterial evolutionary mechanisms, preventing further resistance development. In this study, a green synthesis employing nontoxic lignin as both reducing and capping agents was adopted to formulate stable and biocompatible silver–lignin nanoparticles (NPs) exhibiting antibacterial activity. The resulting silver–lignin NPs were approximately 20 nm in diameter and did not agglomerate after one year of storage at 4 °C. They were able to inhibit the growth of a panel of MDR clinical isolates, including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii, at concentrations that did not affect the viability of a monocyte-derived THP-1 human cell line. Furthermore, the exposure of silver–lignin NPs to the THP-1 cells led to a significant increase in the secretion of the anti-inflammatory cytokine IL-10, demonstrating the potential of these particles to act as an antimicrobial and anti-inflammatory agent simultaneously. P. aeruginosa genes linked with efflux, heavy metal resistance, capsular biosynthesis, and quorum sensing were investigated for changes in gene expression upon sublethal exposure to the silver–lignin NPs. Genes encoding for membrane proteins with an efflux function were upregulated. However, all other genes were membrane proteins that did not efflux metals and were downregulated.
Bacteria-mediated diseases are a global healthcare concern due to the development and spread of antibiotic-resistant strains. Cationic compounds are considered membrane active biocidal agents having a great potential to control bacterial infections, while limiting the emergence of drug resistance. Herein, the versatile and simple layer-by-layer (LbL) technique is used to coat alternating multilayers of an antibacterial aminocellulose conjugate and the biocompatible hyaluronic acid on biocompatible polymer nanoparticles (NPs), taking advantage of the nanosize of these otherwise biologically inert templates. Stable polyelectrolyte-decorated particles with an average size of 50 nm and ζ potential of +40.6 mV were developed after five LbL assembly cycles. The antibacterial activity of these NPs against the Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli increased significantly when the polycationic aminocellulose was in the outermost layer. The large number of amino groups available on the particle surface, together with the nanosize of the multilayer conjugates, improved their interaction with bacterial membrane phospholipids, leading to membrane disruption, as confirmed by a Langmuir monolayer model, and the 10 logs reduction for both bacteria. The biopolymer decorated NPs were also able to inhibit the biofilm formation of S. aureus and E. coli by 94 and 40%, respectively, without affecting human cell viability. The use of LbL-coated NPs appears to be a promising antibiotic-free alternative for controlling bacterial infections using a low amount of antimicrobial agent.
The increased emergence of antibiotic-resistant bacteria is a growing public health concern, and although new drugs are constantly being sought, the pace of development is slow compared with the evolution and spread of multidrug-resistant species. In this study, we developed a novel broad-spectrum antimicrobial agent by simply transforming vancomycin into nanoform using sonochemistry. Vancomycin is a glycopeptide antibiotic largely used for the treatment of infections caused by Gram-positive bacteria but inefficient against Gram-negative species. The nanospherization extended its effect toward Gram-negative Escherichia coli and Pseudomonas aeruginosa, making these bacteria up to 10 and 100 times more sensitive to the antibiotic, respectively. The spheres were able to disrupt the outer membranes of these bacteria, overcoming their intrinsic resistance toward glycopeptides. The penetration of nanospheres into a Langmuir monolayer of bacterial membrane phospholipids confirmed the interaction of the nanoantibiotic with the membrane of E. coli cells, affecting their physical integrity, as further visualized by scanning electron microscopy. Such mechanism of antibacterial action is unlikely to induce mutations in the evolutionary conserved bacterial membrane, therefore reducing the possibility of acquiring resistance. Our results indicated that the nanotransformation of vancomycin could overcome the inherent resistance of Gram-negative bacteria toward this antibiotic and disrupt mature biofilms at antibacterial-effective concentrations.
An important preventive measure for providing a bacteria-free environment for the patients is the introduction of highly efficient and durable antibacterial textiles in hospitals. This work describes a single step sono-enzymatic process for coating of cotton medical textiles with antibacterial ZnO nanoparticles (NPs) and gallic acid (GA) to produce biocompatible fabrics with durable antibacterial properties. Cellulose substrates, however, need pre-activation to achieve sufficient stability of the NPs on their surface. Herein, this drawback is overcome by the simultaneous sonochemical deposition of ZnO NPs and the synthesis of a bio-based adhesive generated by the enzymatic cross-linking of GA in which the NPs were embedded. GA possesses the multiple functions of an antibacterial agent, a building block of the cross-linked phenolic network, and as a compound providing the safe contact of the coated materials with human skin. The ZnO NPs-GA coated fabrics maintained above 60% antibacterial efficacy even after 60 washing cycles at 75 °C hospital laundry regime.
The structure and the electrochemical behaviour of Langmuir and Langmuir-Blodgett (LB) films of the biological ubiquinone-10 (UQ) and a mixture of dipalmytoilphosphatidylcholine (DPPC) and UQ at the molar ratios DPPC:UQ 5:1 and 10:1 have been investigated. The surface pressure-area isotherms of the Langmuir films and the AFM images of the LB films show the formation of a monolayer in the DPPC:UQ mixture till a certain surface pressure is attained, and then at higher surface pressures the UQ is progressively expelled. The cyclic voltammograms of DPPC:UQ LB films formed on indium tin oxide, ITO, at different surface pressures show one reduction and one oxidation peak at low surface pressures, but two or even more reduction and oxidations peaks at medium and high surface pressures. The electrochemical behaviour is correlated with the film structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.