A: Convolutional neural networks (CNNs) have found applications in many image processing tasks, such as feature extraction, image classification, and object recognition. It has also been shown that the inverse of CNNs, so-called deconvolutional neural networks, can be used for inverse problems such as plasma tomography. In essence, plasma tomography consists in reconstructing the 2D plasma profile on a poloidal cross-section of a fusion device, based on line-integrated measurements from multiple radiation detectors. Since the reconstruction process is computationally intensive, a deconvolutional neural network trained to produce the same results will yield a significant computational speedup, at the expense of a small error which can be assessed using different metrics. In this work, we discuss the design principles behind such networks, including the use of multiple layers, how they can be stacked, and how their dimensions can be tuned according to the number of detectors and the desired tomographic resolution for a given fusion device. We describe the application of such networks at JET and COMPASS, where at JET we use the bolometer system, and at COMPASS we use the soft X-ray diagnostic based on photodiode arrays. K : Computerized Tomography (CT) and Computed Radiography (CR); Plasma diagnostics -interferometry, spectroscopy and imaging 1Corresponding author. 2See the author list of Overview of the JET preparation for Deuterium-Tritium Operation by E. Joffrin et al. in Nucl.
Computed tomography is nowadays an indispensable tool in medicine used to diagnose multiple diseases. In clinical and emergency room environments, the speed of acquisition and information processing are crucial. CUDA is a software architecture used to work with NVIDIA graphics processing units. In this paper a methodology to accelerate tomographic image reconstruction based on maximum likelihood expectation maximization iterative algorithm and combined with the use of graphics processing units programmed in CUDA framework is presented. Implementations developed here are used to reconstruct images with clinical use. Timewise, parallel versions showed improvement with respect to serial implementations. These differences reached, in some cases, 2 orders of magnitude in time while preserving image quality. The image quality and reconstruction times were not affected significantly by the addition of Poisson noise to projections. Furthermore, our implementations showed good performance when compared with reconstruction methods provided by commercial software. One of the goals of this work was to provide a fast, portable, simple, and cheap image reconstruction system, and our results support the statement that the goal was achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.