A nanocomposite sample was prepared by melt mixing a high density polyethylene (HDPE) with an in situ polymerized HDPE/multi wall carbon nanotube (MWNT) masterbatch. The nanocomposite had an approximate content of 0.52 wt % MWNT. Rheological, thermal, and mechanical properties were investigated for both neat HDPE and nanocomposite. The nanocomposite, when compared to the neat polymer, exhibits lower values of viscosity, shear modulus and shear stress in extrusion and a concurrent delay of the distortion regimes to higher shear stresses and rates. The nanocomposite presents also improved dimensional stability after processing, and lower values of the melt strength, draw ratio and viscosity in elongational flow. This behavior has been observed in composites in which an adsorption of a fraction (that with the highest molecular weight or relaxation time) of the polymer chains is considered. Furthermore, the enhancement in the crystallization kinetics, probed by rheometry and DSC, suggests that the carbon nanotubes act as nucleating agents for the polymeric chains. Additionally, the presence of adsorbed chains does not only influence the molten state but also induces interesting effects in the mechanical properties of the polymer. As a result, an increase of up to 100% in elastic modulus was observed in the HDPE/MWNT nanocomposite without losing the ductility present in neat HDPE.
Long molecular dynamics simulations of the melt dynamics, glass transition and nonisothermal crystallization of a C 192 polyethylene model have been carried out. In this model, the molecules are sufficiently long to form entanglements in the melt and folds in the crystalline state. On the other hand, the molecules are short enough to enable the use of atomistic simulations on a large scale of time. Two force fields, widely used for polyethylene, are taken into account comparing the simulation results with a broad set of literature experimental data. Although both force fields are able to capture the general physics of the system, TraPPe-UA is in a better quantitative agreement with the experimental data. According with the simulation results some fundamental aspects of polyethylene physical parameters are discussed such as the characteristic ratio (C n = 8.2 and 7.6 at 500 K, for TraPPe-UA and PYS force fields, respectively), the isothermal compressibility (α = 8.57 × 10 −4 K −1 ), the static structure factor and the melt dynamics regimes corresponding to an entangled polymer. Furthermore, the simulated T g (187.0 K) obtained for linear PE is in a very good agreement with the extrapolated T g values (185−195 K) using the Gordon−Taylor equation. Finally, the simulation of the nonisothermal crystallization process supports the view of a mixed state of adjacent and nonadjacent re-entry model. The simulated two phase model reproduces very well the initial fold length expected for high supercoolings and the segregation of the system in ordered and disordered layers. The paper highlights the importance of combining simulation techniques with experimental data as a powerful means to explain the polymer physics.
A combined computer simulation and experimental study describing the viscoelastic properties of linear polyethylene is presented. For the simulation, a set of C1000 polyethylene models were equilibrated using advanced Monte Carlo moves. Then, MD trajectories were calculated. From these simulations the entanglement molecular weight, M
e, and the entanglement relaxation time, τe, were directly obtained. By introducing the experimental value for the plateau modulus and the simulated values for M
e and τe into the reptation model, one finds that the derived curves of the relaxation shear modulus nicely coincide with the experimental ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.