Chromohalobacter salexigens, a Gammaproteobacterium belonging to the family Halomonadaceae, shows a broad salinity range for growth. Osmoprotection is achieved by the accumulation of compatible solutes either by transport (betaine, choline) or synthesis (mainly ectoine and hydroxyectoine). Ectoines can play additional roles as nutrients and, in the case of hydroxyectoine, in thermotolerance. A supplementary solute, trehalose, not present in cells grown at 37°C, is accumulated at higher temperatures, suggesting its involvement in the response to heat stress. Trehalose is also accumulated at 37°C in ectoine-deficient mutants, indicating that ectoines suppress trehalose synthesis in the wild-type strain. The genes for ectoine (ectABC) and hydroxyectoine (ectD, ectE) production are arranged in three different clusters within the C. salexigens chromosome. In order to cope with changing environment, C. salexigens regulates its cytoplasmic pool of ectoines by a number of mechanisms that we have started to elucidate. This is a highly complex process because (i) hydroxyectoine can be synthesized by other enzymes different to EctD (ii) ectoines can be catabolized to serve as nutrients, (iii) the involvement of several transcriptional regulators (σ S , σ 32 , Fur, EctR) and hence different signal transduction pathways, and (iv) the existence of post-trancriptional control mechanisms. In this review we summarize our present knowledge on the physiology and genetics of the processes allowing C. salexigens to cope with osmotic stress and high temperature, with emphasis on the transcriptional regulation.
The disaccharide trehalose is considered as a universal stress molecule, protecting cells and biomolecules from injuries imposed by high osmolarity, heat, oxidation, desiccation and freezing. Chromohalobacter salexigens is a halophilic and extremely halotolerant γ-proteobacterium of the family Halomonadaceae . In this work, we have investigated the role of trehalose as a protectant against salinity, temperature and desiccation in C. salexigens . A mutant deficient in the trehalose-6-phosphate synthase gene ( otsA:: Ω) was not affected in its salt or heat tolerance, but double mutants ectoine- and trehalose-deficient, or hydroxyectoine-reduced and trehalose-deficient, displayed an osmo- and thermosensitive phenotype, respectively. This suggests a role of trehalose as a secondary solute involved in osmo- (at least at low salinity) and thermoprotection of C. salexigens . Interestingly, trehalose synthesis was osmoregulated at the transcriptional level, and thermoregulated at the post-transcriptional level, suggesting that C. salexigens cells need to be pre-conditioned by osmotic stress, in order to be able to quickly synthesize trehalose in response to heat stress. C. salexigens was more sensitive to desiccation than E. coli and desiccation tolerance was slightly improved when cells were grown at high temperature. Under these conditions, single mutants affected in the synthesis of trehalose or hydroxyectoine were more sensitive to desiccation than the wild-type strain. However, given the low survival rates of the wild type, the involvement of trehalose and hydroxyectoine in C. salexigens response to desiccation could not be firmly established.
Hydroxyectoine overproduction by the natural producer Chromohalobacter salexigens is presented in this study. Genetically engineered strains were constructed that at low salinity coexpressed, in a vector derived from a native plasmid, the ectoine (ectABC) and hydroxyectoine (ectD) genes under the control of the ectA promoter, in a temperature-independent manner. Hydroxyectoine production was further improved by increasing the copies of ectD and using a C. salexigens genetic background unable to synthesize ectoines.
BackgroundOsmosensing and associated signal transduction pathways have not yet been described in obligately halophilic bacteria. Chromohalobacter salexigens is a halophilic bacterium with a broad range of salt tolerance. In response to osmotic stress, it synthesizes and accumulates large amounts of the compatible solutes ectoine and hydroxyectoine. In a previous work, we showed that ectoines can be also accumulated upon transport from the external medium, and that they can be used as carbon sources at optimal, but not at low salinity. This was related to an insufficient ectoine(s) transport under these conditions.ResultsA C. salexigens Tn1732-induced mutant (CHR95) showed a delayed growth with glucose at low and optimal salinities, could not grow at high salinity, and was able to use ectoines as carbon sources at low salinity. CHR95 was affected in the transport and/or metabolism of glucose, and showed a deregulated ectoine uptake at any salinity, but it was not affected in ectoine metabolism. Transposon insertion in CHR95 caused deletion of three genes, Csal0865-Csal0867: acs, encoding an acetyl-CoA synthase, mntR, encoding a transcriptional regulator of the DtxR/MntR family, and eupR, encoding a putative two-component response regulator with a LuxR_C-like DNA-binding helix-turn-helix domain. A single mntR mutant was sensitive to manganese, suggesting that mntR encodes a manganese-dependent transcriptional regulator. Deletion of eupR led to salt-sensitivity and enabled the mutant strain to use ectoines as carbon source at low salinity. Domain analysis included EupR as a member of the NarL/FixJ family of two component response regulators. Finally, the protein encoded by Csal869, located three genes downstream of eupR was suggested to be the cognate histidine kinase of EupR. This protein was predicted to be a hybrid histidine kinase with one transmembrane and one cytoplasmic sensor domain.ConclusionsThis work represents the first example of the involvement of a two-component response regulator in the osmoadaptation of a true halophilic bacterium. Our results pave the way to the elucidation of the signal transduction pathway involved in the control of ectoine transport in C. salexigens.
Halophilic gammaproteobacteria of the family Halomonadaceae (including the genera Aidingimonas, Carnimonas, Chromohalobacter, Cobetia, Halomonas, Halotalea, Kushneria, Modicisalibacter, Salinicola, and Zymobacter) have current and promising applications in biotechnology mainly as a source of compatible solutes (powerful stabilizers of biomolecules and cells, with exciting potentialities in biomedicine), salt-tolerant enzymes, biosurfactants, and extracellular polysaccharides, among other products. In addition, they display a number of advantages to be used as cell factories, alternative to conventional prokaryotic hosts like Escherichia coli or Bacillus, for the production of recombinant proteins: (1) their high salt tolerance decreases to a minimum the necessity for aseptic conditions, resulting in cost-reducing conditions, (2) they are very easy to grow and maintain in the laboratory, and their nutritional requirements are simple, and (3) the majority can use a large range of compounds as a sole carbon and energy source. In the last 15 years, the efforts of our group and others have made possible the genetic manipulation of this bacterial group. In this review, the most relevant and recent tools for their genetic manipulation are described, with emphasis on nucleic acid isolation procedures, cloning and expression vectors, genetic exchange mechanisms, mutagenesis approaches, reporter genes, and genetic expression analyses. Complementary sections describing the influence of salinity on the susceptibility of these bacteria to antimicrobials, as well as the growth media most routinely used and culture conditions, for these microorganisms, are also included.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.