The use of Cloud Computing for computation offloading in the robotics area has become a field of interest today. The aim of this work is to demonstrate the viability of cloud offloading in a low level and intensive computing task: a vision-based navigation assistance of a service mobile robot. In order to do so, a prototype, running over a ROS-based mobile robot (Erratic by Videre Design LLC) is presented. The information extracted from on-board stereo cameras will be used by a private cloud platform consisting of five bare-metal nodes with AMD Phenom 965 4 CPU, with the cloud middleware Openstack Havana. The actual task is the shared control of the robot teleoperation, that is, the smooth filtering of the teleoperated commands with the detected obstacles to prevent collisions. All the possible offloading models for this case are presented and analyzed. Several performance results using different communication technologies and offloading models are explained as well. In addition to this, a real navigation case in a domestic circuit was done. The tests demonstrate that offloading computation to the Cloud improves the performance and navigation results with respect to the case where all processing is done by the robot.Note to Practitioners-Cloud computing for robotics is very promising for several reasons, like robot's energy saving, larger storage capacity, stable electric power, better resource utilization and the difficulty of upgrading the robots' embedded hardware. The presented application extracts 3D point clouds from the stereo image pairs of a camera situated on the robot. Using these 3D points, a shared control is implemented to help the remote teleop-eration of a robot. That is, the commands sent by a joystick are attenuated when a possible collision is detected (by checking the future commanded trajectory against the 3D points). All of these computationally heavy tasks (difficult to perform by a mobile robot) are done in the cloud. The offloading models proposed in this paper are generic enough to be used in other applications. Obtained results show that further improvement in communica-tion technologies will suppose a significant performance boost for offloading computation.
addition, this proof-of-concept claims that many interesting opportunities and challenges arise, for example, when mobile watch robots and fixed cameras would act as a team for carrying out complex collaborative surveillance strategies.
Thanks to the advent of technologies like Cloud Computing, the idea of computation offloading of robotic tasks is more than feasible. Therefore, it is possible to use legacy embedded systems for computationally heavy tasks like navigation or artificial vision, hence extending its lifespan. In this chapter we apply Cloud Computing for building a Cloud-Based 3D Point Cloud extractor for stereo images. The objective is to have a dynamically scalable solution (one of Cloud Computing's most important features) and applicable to near real-time scenarios. This last feature brings several challenges that must be addressed: meeting of deadlines, stability, limitation of communication technologies. All those elements will be thoroughly analyzed in this chapter, providing experimental results that prove the efficacy of the solution. At the end of the chapter, a successful use case of the platform is explained: navigation assistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.