In December 2019, a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related epidemic was first observed in Wuhan, China. In 2020, owing to the highly infectious and deadly nature of the virus, this widespread novel coronavirus disease 2019 (nCOVID-19) became a worldwide pandemic. Studies have revealed that various environmental factors including temperature, humidity, and air pollution may also affect the transmission pattern of COVID-19. Unfortunately, still, there is no specific drug that has been validated in large-scale studies to treat patients with confirmed nCOVID-19. However, remdesivir, an inhibitor of RNA-dependent RNA polymerase (RdRp), has appeared as an auspicious antiviral drug. Currently, a large-scale study on remdesivir (i.e., 200 mg on first day, then 100 mg once/day) is ongoing to evaluate its clinical efficacy to treat nCOVID-19. Good antiviral activity against SARS-CoV-2 was not observed with the use of lopinavir/ritonavir (LPV/r). Nonetheless, the combination of umifenovir and LPV/r was found to have better antiviral activity. Furthermore, a combination of hydroxychloroquine (i.e., 200 mg 3 times/day) and azithromycin (i.e., 500 mg on first day, then 250 mg/day from day 2-5) also exhibited good activity. Currently, there are also ongoing studies to evaluate the efficacy of teicoplanin and monoclonal and polyclonal antibodies against SARS-CoV-2. Thus, in this article, we have analyzed the genetic diversity and molecular pathogenesis of nCOVID-19. We also present possible therapeutic options for nCOVID-19 patients.
The recent outbreak of the COVID-2019 (coronavirus disease 2019) due to the infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has realized the requirement of alternative therapeutics to mitigate and alleviate this lethal infection. These alternative therapies are effective when they are started at the initial stage of the infection. Some drugs that were used in previous other related infections SARS-CoV-2003 and Middle East respiratory syndrome coronavirus (MERS-CoV)-2012 could be potentially active against currently emerging SARS-CoV-2. This fact imparts some rationale of current interventions, in the absence of any specific therapeutics for SARS-CoV-2. It is imperative to focus on the available antimicrobial and adjunct therapies during the current emergency state and overcome the challenges associated with the absence of robust controlled studies. There is no established set of drugs to manage SARS-CoV-2 infected patients. However, closely following patients’ conditions and responding with the dosage guidelines of available drugs may significantly impact our ability to slow down the infection. Of note, it depends upon the condition of the patients and associated comorbid; therefore, the health workers need to choose the drug combinations judiciously until COVID-19 specific drug or vaccine is developed with the collective scientific rigor. In this article, we reviewed the available antimicrobial drug, supportive therapies, and probable high importance vaccines for the COVID-19 treatment.
Background and objectives: COVID-19 patients exhibit a broad range of manifestations, presenting with a flu-like respiratory tract infection that can advance to a systemic and severe disease characterized by pneumonia, pulmonary edema, severe damage to the airways, and acute respiratory distress syndrome (ARDS, causing fatality in 70% of COVID-19 cases). A ‘cytokine storm’ profile is found in most severely influenced COVID-19 patients. The treatment protocol of the disease also includes tocilizumab, which is a humanized monoclonal antibody used to treat autoimmune and inflammatory conditions. This study was designed (1) to assess the role of tocilizumab in COVID-19 patients regarding therapeutic efficacy through evaluation of cytokine release syndrome (CRS) resolution and anticoagulant effect, analyzing clinical safety via monitoring of associated adverse effects profile; and (2) to compare the clinical safety and therapeutic efficacy of institutional treatment regimen (alone) versus tocilizumab added to an institutional treatment module in COVID-19 patients. Materials and Methods: In this study, the endpoints parametric assessment of severely diseased patients of COVID-19 was performed (total n = 172, control group (institutional protocol treatment provided), n = 101 and test group (tocilizumab provided), n = 71) at the Khyber Teaching Institution, MTI, Peshawar. The assessments were compared using non-parametric analyses at baseline and after a follow-up of 12–18 days until the patient discharged or expired. Results: Results of the study revealed an insignificant difference among the control vs. test group in resolving inflammatory parameters (C-reactive protein (CRP) 21.30 vs. 50.07; p = 0.470, ferritin 482.9 vs. 211.5; p = 0.612, lactate dehydrogenase (LDH) 29.12 vs.18.8; p = 0.0863, and D-dimer 464 vs.164.4; p = 0.131). However, a statistically significant difference was found between the control group and test group regarding coagulation parameters (international normalized ratio (INR) 0.12 vs. −0.07; p ≤ 0.001; activated partial thromboplastin time (aPTT) 0.42 vs. −1.16; p ≤ 0.001; prothrombin time (PT) 0.31 vs. −0.96; p ≤ 0.001; platelet count −12.34 vs. −1.47; p = 0.012) and clinical survival rate (89.10 vs. 90.14; p < 0.001). Furthermore, there was significantly higher infection rates and raised alanine aminotransferase (ALT) and alkaline phosphatase (ALP) associated with the tocilizumab group as compared to those receiving institutional treatment (bacterial infections: 0.99% vs. 15.49%; p ≤ 0.01, ALT: 3.96% vs. 28.16%; p ≤ 0.01, ALP: 1.98% vs. 22.53%; p ≤ 0.01). Conclusions: From this study, it was concluded that tocilizumab can be a better drug of choice in terms of efficacy, particularly in resolving coagulopathy in severe COVID-19 patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.