Smart materials with the ability to repair themselves have been the focus of different fields of science and engineering. This mini-review provides an insight into the rapidly expanding area of research into smart materials with self-healing properties and discusses both chemical (reversible and polymeric) and also non-chemical (irreversible and microvascular) systems, with emphasis focused on the recent reports in the field.
Antimicrobial coatings can reduce the occurrence of medical device-related bacterial infections. Poly(2-(dimethylamino ethyl)methacrylate) (pDMAEMA) is one such polymer that is being researched in this regard. The aims of this study were to (1) elucidate pDMAEMA’s antimicrobial activity against a range of Gram-positive and Gram-negative bacteria and (2) to investigate its antimicrobial mode of action. The methods used include determination of minimum inhibitory concentration (MIC) values against various bacteria and the effect of pH and temperature on antimicrobial activity. The ability of pDMAEMA to permeabilise bacterial membranes was determined using the dyes 1-N-phenyl-naphthylamine and calcein-AM. Flow cytometry was used to investigate pDMAEMA’s capacity to be internalized by bacteria and to determine effects on bacterial cell cycling. pDMAEMA was bacteriostatic against Gram-negative bacteria with MIC values between 0.1−1 mg/mL. MIC values against Gram-positive bacteria were variable. pDMAEMA was active against Gram-positive bacteria around its pK
a and at lower pH values, while it was active against Gram-negative bacteria around its pK
a and at higher pH values. pDMAEMA inhibited bacterial growth by binding to the outside of the bacteria, permeabilizing the outer membrane and disrupting the cytoplasmic membrane. By incorporating pDMAEMA with erythromycin, it was found that the efficacy of the latter was increased against Gram-negative bacteria. Together, the results illustrate that pDMAEMA acts in a similar fashion to other cationic biocides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.