Six individual amino acid substitutions at separate positions in the tertiary structure of subtilisin BPN' (EC 3.4.21.14) were found to increase the stability of this enzyme, as judged by differential scanning calorimetry and decreased rates of thermal inactivation. These stabilizing changes, N218S, G169A, Y217K, M50F, Q206C, and N76D, were discovered through the use of five different investigative approaches: (1) random mutagenesis; (2) design of buried hydrophobic side groups; (3) design of electrostatic interactions at Ca2+ binding sites; (4) sequence homology consensus; and (5) serendipity. Individually, the six amino acid substitutions increase the delta G of unfolding between 0.3 and 1.3 kcal/mol at 58.5 degrees C. The combination of these six individual stabilizing mutations together into one subtilisin BPN' molecule was found to result in approximately independent and additive increases in the delta G of unfolding to give a net increase of 3.8 kcal/mol (58.5 degrees C). Thermodynamic stability was also shown to be related to resistance to irreversible inactivation, which included elevated temperatures (65 degrees C) or extreme alkalinity (pH 12.0). Under these denaturing conditions, the rate of inactivation of the combination variant is approximately 300 times slower than that of the wild-type subtilisin BPN'. A comparison of the 1.8-A-resolution crystal structures of mutant and wild-type enzymes revealed only independent and localized structural changes around the site of the amino acid side group substitutions.(ABSTRACT TRUNCATED AT 250 WORDS)
A weak Ca2+ binding site in the bacterial serine protease subtilisin BPN' (EC 3.4.21.14) was chosen as a model to explore the feasibility of stabilizing a protein by increasing the binding affinity at a metal ion binding site. The existence of this weak Ca2+ binding site was first discovered through a study of the rate of thermal inactivation of wild-type subtilisin BPN' at 65 degrees C as a function of the free [Ca2+]. Increasing the [Ca2+] in the range 0.10-100 mM caused a 100-fold decrease in the rate of thermal inactivation. The data were found to closely fit a theoretical titration curve for a single Ca2+ specific binding site with an apparent log Ka = 1.49. A series of refined X-ray crystal structures (R less than or equal to 0.15, 1.7 A) of subtilisin in the presence of 0.0, 25.0, and 40.0 mM CaCl2 has allowed a detailed structural characterization of this Ca2+ binding site. Negatively charged side chains were introduced in the vicinity of the bound Ca2+ by changing Pro 172 and Gly 131 to Asp residues through site-directed and random mutagenesis techniques, respectively. These changes were found to increase the affinity of the Ca2+ binding site by 3.4- and 2-fold, respectively, when compared with the wild-type protein (ionic strength = 0.10). X-ray studies of these new variants of subtilisin revealed the carboxylate side chains to be 6.8 and 13.2 A, respectively, from the bound Ca2+. These distances and the degree of enhanced binding are consistent with simple electrostatic theory.(ABSTRACT TRUNCATED AT 250 WORDS)
Introduction of a disulfide bond by site-directed mutagenesis was found to enhance the stability of subtilisin BPN' (EC 3.4.21.14) under a variety of conditions. The location of the new disulfide bond was selected with the aid of a computer program, which scored various sites according to the amount of distortion that an introduced disulfide linkage would create in a 1.3-A X-ray model of native subtilisin BPN'. Of the several amino acid pairs identified by this program as suitable candidates, Thr-22 and Ser-87 were selected by using the additional requirement that the individual cysteine substitutions occur at positions that exhibit some degree of variability in related subtilisin amino acid sequences. A subtilisin variant containing cysteine residues at positions 22 and 87 was created by site-directed mutagenesis and was shown to have an activity essentially equivalent to that of the wild-type enzyme. Differential scanning calorimetry experiments demonstrated the variant protein to have a melting temperature 3.1 degrees C higher than that of the wild-type protein and 5.8 degrees C higher than that of the reduced form (-SH HS-) of the variant protein. Kinetic experiments performed under a variety of conditions, including 8 M urea, showed that the Cys-22/Cys-87 disulfide variant undergoes thermal inactivation at half the rate of that of the wild-type enzyme. The increased thermal stability of this disulfide variant is consistent with a decrease in entropy for the unfolded state relative to the unfolded state that contains no cross-link, as would be predicted from the statistical thermodynamics of polymers.
The crystal complex of fluorescein bound to the high-affinity anti-fluorescein 4-4-20 Fab (Ka = 10(10) M-1 at 2 degrees C) has been determined at 1.85 A. Isomorphous crystals of two isoelectric forms (pI = 7.5 and 7.9) of the anti-fluorescein 4-4-20 Fab, an IgG2A [Gibson et al. (1988) Proteins: Struct. Funct. Genet., 3, 155-160], have been grown. Both complexes crystallize with one molecule in the asymmetric unit in space group P1, with a = 42.75 A, b = 43.87 A, c = 58.17 A, alpha = 95.15 degrees, beta = 86.85 degrees and gamma = 98.01 degrees. The final structure has an R value of 0.188 at 1.85 A resolution. Interactions between bound fluorescein, the complementarity-determining regions (CDRs) of the Fab and the active-site mutants of the 4-4-20 single-chain Fv will be discussed. Differences were found between the structure reported here and the previously reported 2.7 A 4-4-20 Fab structure [Herron et al. (1989) Proteins: Struct. Funct. Genet., 5, 271-280]. Our structure determination was based on 26,328 unique reflections--four times the amount of data used in the previous report. Differences in the two structures could be explained by differences in interpreting the electron density maps at the various resolutions. The r.m.s. deviations between the variable and constant domains of the two structures were 0.77 and 1.54 A, respectively. Four regions of the light chain and four regions of the heavy chain had r.m.s. backbone deviations of > 4 A. The most significant of these was the conformation of the light chain CDR 1.
A fluorescein-binding single-chain Fv (scFv) was chosen as a model for the study of the physicochemical parameters associated with synthetic IgG fragments. Three such scFv proteins were designed from the primary sequences of one anti-fluorescyl monoclonal antibody (Mab 4.4.20). These were constructed with varying-length interdomain peptide linkers of between 12 and 25 residues, expressed in Escherichia coli, and the protein folding, stability, and antigen-binding characteristics were assessed. Efficient renaturation could be accomplished in vitro to yield approximately 26 mg of active scFv/L of fermentation. Scatchard analysis for fluorescein ligand binding revealed that the scFv designs come within 2-fold of the Ka = 1.99 (+/- 0.18) x 10(9) observed for the parental 4.4.20 Fab and have identical stoichiometries (n approximately 0.99). Reversible solvent denaturation studies demonstrated that the unfolding/refolding equilibria for the scFv proteins can be fit to a simple two-state model and that two of the scFv designs were found to be slightly more stable than single IgG domains (VL and CL) when assessed in terms of the free energy of unfolding, delta Gon-u, or nearly identical to other multiple domain immunoglobulin proteins such as light chains and Fab's when relative transition midpoints, Cm, are compared. Linkers which conferred conformational flexibility beyond the minimally required length of 12 residues were found to have a stabilizing effect. By these criteria of ligand-binding function and protein stability, the scFv proteins were found to be bona fide minimal replicas of their parental IgG molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.