Deciding whether a missense allelic variant affects protein function is important in many contexts. We previously demonstrated that a detailed analysis of p53 intragenic conservation correlates with somatic mutation hotspots. Here we refine these evolutionary studies and expand them to the p16/Ink4a gene. We calculated that in order for 'absolute conservation' of a codon across multiple species to achieve Po0.05, the evolutionary substitution database must contain at least 3(M) variants, where M equals the number of codons in the gene. Codons in p53 were divided into high (73% of codons), intermediate (29% of codons), and low (0 codons) likelihood of being mutation hotspots. From a database of 263 somatic missense p16 mutations, we identified only four codons that are mutational hotspots at Po0.05 (>8 mutations). However, data on function, structure, and disease association support the conclusion that 11 other codons with !5 somatic mutations also likely indicate functionally critical residues, even though P>0.05. We calculated p16 evolution using amino acid substitution matrices and nucleotide substitution distances. We looked for evolutionary parameters at each codon that would predict whether missense mutations were disease associated or disrupted function. The current p16 evolutionary substitution database is too small to determine whether observations of 'absolute conservation' are statistically significant. Increasing the number of sequences from three to seven significantly improved the predictive value of evolutionary computations. The sensitivity and specificity for conservation scores in predicting disease association of p16 codons is 70-80%. Despite the small p16 sequence database, our calculations of high conservation correctly predicted loss of cell cycle arrest function in 75% of tested codons, and low conservation correctly predicted wild-type function in 80-90% of codons. These data validate our hypothesis that detailed evolutionary analyses help predict the consequences of missense amino-acid variants.
Progression through the eukaryotic cell cycle is driven by the activity of cyclin-dependent kinases. The cyclin D-dependent kinase Cdk4 promotes progression through the G(1) phase of the cell cycle and is deregulated in many human tumors. The tumor suppressor protein p16(INK4A) (p16) forms a complex with Cdk4 and inhibits kinase activity. Here we report that p16 is phosphorylated, and the phosphorylated form of p16 is preferentially associated with Cdk4 in normal human fibroblasts. We mapped phosphorylation sites on exogenously overexpressed p16 to serines 7, 8, 140, and 152 and found that endogenous p16 associated with Cdk4 is phosphorylated at serine 152. All mapped phosphorylation sites lie outside of the conserved kinase-binding domain of p16 but in regions of the protein affected by mutations in familial and sporadic cancer. Our results suggest a novel regulation of p16 activity.
Galectin-3 is a carbohydrate binding protein involved in multiple processes including cell-cycle regulation and apoptosis. The ability of galectin-3 to protect cells from apoptosis is dependent upon a region of the protein known as a BH-1 domain for its homology to the anti-apoptotic protein Bcl-2. Here, we show that a monoclonal antibody (MAb) to the human tumor suppressor protein p16INK4A recognizes a post-translationally modified form of human galectin-3. The modified form is detectable in only a subset of cell types expressing galectin-3, indicating that the modification is cell-type-specific. Although there is little amino acid sequence homology between p16INK4a and galectin-3, we show by epitope mapping that the modification directly affects the structure of galectin-3's BH-1 domain. Elucidation of the nature of this modification might provide further insight into galectin-3 function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.