Soybean (Glycine max) is one of the most important crop plants for seed protein and oil content, and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne microorganisms. We sequenced the 1.1-gigabase genome by a whole-genome shotgun approach and integrated it with physical and high-density genetic maps to create a chromosome-scale draft sequence assembly. We predict 46,430 protein-coding genes, 70% more than Arabidopsis and similar to the poplar genome which, like soybean, is an ancient polyploid (palaeopolyploid). About 78% of the predicted genes occur in chromosome ends, which comprise less than one-half of the genome but account for nearly all of the genetic recombination. Genome duplications occurred at approximately 59 and 13 million years ago, resulting in a highly duplicated genome with nearly 75% of the genes present in multiple copies. The two duplication events were followed by gene diversification and loss, and numerous chromosome rearrangements. An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties.
A high-throughput proteomic approach was employed to determine the expression profile and identity of hundreds of proteins during seed filling in soybean (Glycine max) cv Maverick. Soybean seed proteins were analyzed at 2, 3, 4, 5, and 6 weeks after flowering using two-dimensional gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. This led to the establishment of high-resolution proteome reference maps, expression profiles of 679 spots, and corresponding matrix-assisted laser desorption ionization time-of-flight mass spectrometry spectra for each spot. Database searching with these spectra resulted in the identification of 422 proteins representing 216 nonredundant proteins. These proteins were classified into 14 major functional categories. Proteins involved in metabolism, protein destination and storage, metabolite transport, and disease/defense were the most abundant. For each functional category, a composite expression profile is presented to gain insight into legume seed physiology and the general regulation of proteins associated with each functional class. Using this approach, an overall decrease in metabolism-related proteins versus an increase in proteins associated with destination and storage was observed during seed filling. The accumulation of unknown proteins, sucrose transport and cleavage enzymes, cysteine and methionine biosynthesis enzymes, 14-3-3-like proteins, lipoxygenases, storage proteins, and allergenic proteins during seed filling is also discussed. A user-intuitive database (http://oilseedproteomics.missouri.edu) was developed to access these data for soybean and other oilseeds currently being investigated.
The genome of Arabidopsis has been searched for sequences of genes involved in acyl lipid metabolism. Over 600 encoded proteins have been identified, cataloged, and classified according to predicted function, subcellular location, and alternative splicing. At least one-third of these proteins were previously annotated as "unknown function" or with functions unrelated to acyl lipid metabolism; therefore, this study has improved the annotation of over 200 genes. In particular, annotation of the lipolytic enzyme group (at least 110 members total) has been improved by the critical examination of the biochemical literature and the sequences of the numerous proteins annotated as "lipases." In addition, expressed sequence tag (EST) data have been surveyed, and more than 3,700 ESTs associated with the genes were cataloged. Statistical analysis of the number of ESTs associated with specific cDNA libraries has allowed calculation of probabilities of differential expression between different organs. More than 130 genes have been identified with a statistical probability Ͼ 0.95 of preferential expression in seed, leaf, root, or flower. All the data are available as a Web-based database, the Arabidopsis Lipid Gene database (http://www.plantbiology.msu.edu/lipids/genesurvey/index.htm). The combination of the data of the Lipid Gene Catalog and the EST analysis can be used to gain insights into differential expression of gene family members and sets of pathway-specific genes, which in turn will guide studies to understand specific functions of individual genes.Acyl lipids can be defined as fatty acids and their naturally occurring ester, ether, or amide derivatives. In plants, these include acylglycerols such as triacylglycerols (TAGs), phospholipids, galactolipids, and sulfolipids, plus sphingolipids, acylated steryl glycosides, oxylipins, cutins, suberins, estolides and wax, and sterol esters. The list may be extended if we consider molecules immediately derived from acyl groups, such as the epicuticular wax components (hydrocarbons, alcohols, ketones, and so on) or natural products such as anacardic acids that impart protection to predation. Polar lipids are amphipathic and as such self-associate in water to produce a variety of structures. Therefore, they provide the building blocks for biological membranes. There is substantial evidence indicating that the composition of acyl lipids in membranes influences the targeting, distribution, and functional properties of both integral and membrane-associated proteins (Sprong et al., 2001;Wallis and Browse, 2002). Furthermore, many polar lipids and the intermediates in their synthesis and degradation serve as signaling molecules. In summary, acyl lipids function in a wide range of biological processes, such as carbon and free energy storage, cell signaling, modulation of enzyme activity and protein localization, vesicle budding and fusion, waterproofing, and surface protection (Browse and Somerville, 1994).Some acyl lipids such as TAGs, the major constituent of vegetable oils, are ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.