Alternative plasticizers to di(2-ethylhexyl) phthalate (DEHP) for blood bags have been sought for many years. Cyclohexane-1,2-dicarboxylic acid, diisononylester (Hexamoll(®) DINCH(®)) is an alternative that has been evaluated in preliminary studies for compatibility and efficacy to preserve whole blood. While Hexamoll(®) DINCH(®) has an extensive database for mammalian toxicity via oral administration, data were needed to evaluate toxicity from intravenous (IV) administration to support the use of the plasticizer Hexamoll(®) DINCH(®) in blood bags. A series of studies was performed by slow IV injection or IV infusion of Hexamoll(®) DINCH(®), a highly viscous, hydrophobic substance, suspended in Intralipid(®) 20% (20% intravenous fat emulsion). Rats were injected once, followed by 14 days of recovery; injected daily for 5 days followed by 5 days of recovery, or infused for 29 days (4h/day) followed by 14 days of recovery. Dose levels were 0, 62, 125, and 250-300mg/kg body weight/day. These dose levels represent the limits of suspension and far exceed any anticipated exposures from migration out of plasticized blood bags. Animals were observed for signs of toxicity; body weight and feed consumption were measured; blood collected for clinical chemistry and hematology; and tissues collected and processed for histopathology. Special emphasis was placed on evaluating endpoints and tissues that are commonly associated with plasticizer exposure in rodents. Urine was collected during the 4-week study to quantify urinary metabolites of Hexamoll(®) DINCH(®). The results of the studies indicate that no substance-related toxicity occurred: no effects on behavior, no effects on organ weight, no effect on serum chemistry including thyroid hormones; and no effect on major organs, especially no testicular toxicity and no indication for peroxisome proliferation in the liver. The only effects seen were petechia and granulomas related to dissipation of suspended Hexamoll(®) DINCH(®) in the aqueous environment of the blood. However, the results of metabolite analyses demonstrate that Hexamoll(®) DINCH(®) was bioavailable. Therefore, based on the lack of Hexamoll(®) DINCH(®)-related systemic toxicity with the exception of the physical limitations, the no-observed-adverse-effect level for parenterally administered Hexamoll(®) DINCH(®) is considered to be 300mg/kg bw/day.
The purpose of this study was to determine the extent to which alpha(2)-adrenoceptor (alpha(2)-AR) pathways affect the central motor output to upper airway muscles that regulate airflow. Electromyogram (EMG) measurements were made from posterior cricoarytenoid (PCA), cricothyroid (CT), thyroarytenoid (TA), and middle (MPC) and inferior (IPC) pharyngeal constrictor muscles in awake standing goats. Systemic administration of the alpha(2)-AR agonist clonidine induced a highly dysrhythmic pattern of ventilation in all animals that was characterized by alternating episodes of tachypnea and slow irregular breathing patterns, including prolonged and variable expiratory time intervals. Periods of apnea were commonly observed. Dysrhythmic ventilatory patterns induced by clonidine were associated with differential recruitment of upper airway muscles. alpha(2)-AR stimulation preferentially decreased the activity of the PCA, CT, and IPC muscles while increasing TA and MPC EMG activities. Clonidine-induced apneas were associated with continuous tonic activation of laryngeal (TA) and pharyngeal (MPC) adductors, leading to airway closure and arterial oxygen desaturation. Tonic activation of the TA and MPC muscles was interrupted only during the first inspiratory efforts after central apnea. Laryngeal abductor, diaphragm, and transversus abdominis EMG activities were completely silenced during apneic events. Ventilatory and EMG effects were reversed by selective alpha(2)-AR blockade with SKF-86466. The results demonstrate that alpha(2)-AR pathways are important modulators of central respiratory motor outputs to the upper airway muscles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.