Large-scale information processing systems are able to extract massive collections of interrelated facts, but unfortunately transforming these candidate facts into useful knowledge is a formidable challenge. In this paper, we show how uncertain extractions about entities and their relations can be transformed into a knowledge graph. The extractions form an extraction graph and we refer to the task of removing noise, inferring missing information, and determining which candidate facts should be included into a knowledge graph as knowledge graph identification. In order to perform this task, we must reason jointly about candidate facts and their associated extraction confidences, identify coreferent entities, and incorporate ontological constraints. Our proposed approach uses probabilistic soft logic (PSL), a recently introduced probabilistic modeling framework which easily scales to millions of facts. We demonstrate the power of our method on a synthetic Linked Data corpus derived from the MusicBrainz music community and a real-world set of extractions from the NELL project containing over 1M extractions and 70K ontological relations. We show that compared to existing methods, our approach is able to achieve improved AUC and F1 with significantly lower running time.
Knowledge graph (KG) embedding techniques use structured relationships between entities to learn lowdimensional representations of entities and relations. One prominent goal of these approaches is to improve the quality of knowledge graphs by removing errors and adding missing facts. Surprisingly, most embedding techniques have been evaluated on benchmark datasets consisting of dense and reliable subsets of human-curated KGs, which tend to be fairly complete and have few errors. In this paper, we consider the problem of applying embedding techniques to KGs extracted from text, which are often incomplete and contain errors. We compare the sparsity and unreliability of different KGs and perform empirical experiments demonstrating how embedding approaches degrade as sparsity and unreliability increase.
NLP systems rarely give special consideration to numbers found in text. This starkly contrasts with the consensus in neuroscience that, in the brain, numbers are represented differently from words. We arrange recent NLP work on numeracy into a comprehensive taxonomy of tasks and methods. We break down the subjective notion of numeracy into 7 subtasks, arranged along two dimensions: granularity (exact vs approximate) and units (abstract vs grounded). We analyze the myriad representational choices made by over a dozen previously published number encoders and decoders. We synthesize best practices for representing numbers in text and articulate a vision for holistic numeracy in NLP, comprised of design trade-offs and a unified evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.