We study the primary decomposition of lattice basis ideals. These ideals are binomial ideals with generators given by the elements of a basis of a saturated integer lattice. We show that the minimal primes of such an ideal are completely determined by the sign pattern of the basis elements, while the embedded primes are not. As a special case we examine the ideal generated by the 2 × 2 adjacent minors of a generic m × n matrix. In particular, we determine all minimal primes in the 3 × n case. We also present faster ways of computing a generating set for the associated toric ideal from a lattice basis ideal.
Abstract. This paper presents a result concerning the structure of affine semigroup rings that are complete intersections. It generalizes to arbitrary dimensions earlier results for semigroups of dimension less than four. The proof depends on a decomposition theorem for mixed dominating matrices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.