Muscle-invasive bladder cancer (MIBC) is an aggressive disease with limited therapeutic options. Although immunotherapies are approved for MIBC, the majority of patients fail to respond, suggesting existence of complementary immune evasion mechanisms. Here, we report that the PPARγ/RXRα pathway constitutes a tumor-intrinsic mechanism underlying immune evasion in MIBC. Recurrent mutations in RXRα at serine 427 (S427F/Y), through conformational activation of the PPARγ/RXRα heterodimer, and focal amplification/overexpression of PPARγ converge to modulate PPARγ/RXRα-dependent transcription programs. Immune cell-infiltration is controlled by activated PPARγ/RXRα that inhibits expression/secretion of inflammatory cytokines. Clinical data sets and an in vivo tumor model indicate that PPARγHigh/RXRαS427F/Y impairs CD8+ T-cell infiltration and confers partial resistance to immunotherapies. Knockdown of PPARγ or RXRα and pharmacological inhibition of PPARγ significantly increase cytokine expression suggesting therapeutic approaches to reviving immunosurveillance and sensitivity to immunotherapies. Our study reveals a class of tumor cell-intrinsic “immuno-oncogenes” that modulate the immune microenvironment of cancer.
Activation of the fibroblast growth factor receptor FGFR4 by FGF19 drives hepatocellular carcinoma (HCC), a disease with few, if any, effective treatment options. While a number of pan-FGFR inhibitors are being clinically evaluated, their application to FGF19-driven HCC may be limited by dose-limiting toxicities mediated by FGFR1-3 receptors. To evade the potential limitations of pan-FGFR inhibitors, we generated H3B-6527, a highly selective covalent FGFR4 inhibitor, through structure-guided drug design. Studies in a panel of 40 HCC cell lines and 30 HCC PDX models showed that FGF19 expression is a predictive biomarker for H3B-6527 response. Moreover, coadministration of the CDK4/6 inhibitor palbociclib in combination with H3B-6527 could effectively trigger tumor regression in a xenograft model of HCC. Overall, our results offer preclinical proof of concept for H3B-6527 as a candidate therapeutic agent for HCC cases that exhibit increased expression of FGF19. .
Mutations in estrogen receptor alpha (ER) that confer resistance to existing classes of endocrine therapies are detected in up to 30% of patients who have relapsed during endocrine treatments. Since a significant proportion of therapy-resistant breast cancer metastases continue to be dependent on ER signaling, there remains a critical need to develop the next generation of ER antagonists that can overcome aberrant ER activity. Through our drug discovery efforts, we identified H3B-5942 which covalently inactivates both wild-type and mutant ER by targeting Cys530 and enforcing a unique antagonist conformation. H3B-5942 belongs to a class of ER antagonist referred to as Selective Estrogen Receptor Covalent Antagonists (SERCAs).In vitro comparisons of H3B-5942 with standard of care (SoC) 10, 2018; DOI: 10.1158/2159-8290.CD-17-1229 3Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Author Manuscript Published OnlineFirst on July SignificanceNearly 30% of endocrine-therapy resistant breast cancer metastases harbor constitutively activating mutations in ER. Selective Estrogen Receptor Covalent Antagonist (SERCA) H3B-5942 engages C530 of both ER WT and ER MUT, promotes a unique antagonist conformation, and demonstrates improved in vitro and in vivo activity over standard of care (SoC) agents.Importantly, single agent efficacy can be further enhanced by combining with CDK4/6 or mTOR inhibitors.
Increased protein levels of striatal-enriched tyrosine phosphatase (STEP) have recently been reported in postmortem schizophrenic cortex. The present study sought to replicate this finding in a separate cohort of postmortem samples and to extend observations to striatum, including subjects with bipolar disorder and major depressive disorder in the analysis. No statistically significant changes between disease and control subjects were found in STEP mRNA or protein levels in dorsolateral prefrontal cortex or associative striatum. Although samples were matched for several covariates, postmortem interval correlated negatively with STEP protein levels, emphasizing the importance of including these analyses in postmortem studies.
Extensive evidence on rapid and long-lasting antidepressant effects of intravenous ketamine motivated efforts to identify underlying mechanisms that would enable development of novel drugs with similar efficacy, but improved safety and pharmacokinetic profiles. It has been suggested that the antidepressant-like action of ketamine may be mediated by the activation of mTOR-dependent intracellular cascades. Therefore, without any coordination or pre-existing agreement, research labs at AbbVie, Servier, Pfizer and Alkermes started independent experiments aiming to reproduce and extend published evidence. More than a dozen experiments conducted by these four independent teams failed to detect robust effects of ketamine on markers reported to be affected in the original study by Li et al. (2010). Thus, detection of the effects of ketamine on mTOR seem to require special conditions that are difficult to identify and establish, at least in some labs. Present results emphasize the importance of publishing detailed methods either within the paper or as supplementary material. This information is essential for follow-up studies that any significant research is likely to trigger. Further, our efforts to identify individual labs that tried to establish ketamine’s effects on mTOR highlight the need for a peer-to-peer mechanism of information exchange such as the one being developed by the ECNP Preclinical Data Forum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.