LY-450139 is a ␥-secretase inhibitor shown to have efficacy in multiple cellular and animal models. Paradoxically, robust elevations of plasma amyloid- (A) have been reported in dogs and humans after administration of subefficacious doses. The present study sought to further evaluate A responses to LY-450139 in the guinea pig, a nontransgenic model that has an A sequence identical to that of human. Male guinea pigs were treated with LY-450139 (0.2-60 mg/kg), and brain, cerebrospinal fluid, and plasma A levels were characterized at 1, 3, 6, 9, and 14 h postdose. Low doses significantly elevated plasma A levels at early time points, with return to baseline within hours. Higher doses inhibited A levels in all compartments at early time points, but elevated plasma A levels at later time points. To determine whether this phenomenon occurs under steadystate drug exposure, guinea pigs were implanted with subcutaneous minipumps delivering LY-450139 (0.3-30 mg/kg/day) for 5 days. Plasma A was significantly inhibited at 10 -30 mg/kg/day, but significantly elevated at 1 mg/kg/day. To further understand the mechanism of A elevation by LY-450139, H4 cells overexpressing the Swedish mutant of amyloid-precursor protein and a mouse embryonic stem cell-derived neuronal cell line were studied. In both cellular models, elevated levels of secreted A were observed at subefficacious concentrations, whereas dose-responsive inhibition was observed at higher concentrations. These results suggest that LY-450139 modulates the ␥-secretase complex, eliciting A lowering at high concentrations but A elevation at low concentrations.The pathological accumulation of amyloid- peptide into dense core plaques in the brains of Alzheimer's disease patients is the ultimate target of multiple disease-modifying drug discovery efforts. One strategy that has entered the clinic is the use of a ␥-secretase inhibitor to reduce central A production. Preclinically, multiple ␥-secretase inhibitors have demonstrated central and peripheral A-lowering activity in transgenic mouse lines overexpressing human mutant amyloid precursor protein (Dovey et al., 2001;Cirrito et al., 2003;Lanz et al., 2003Lanz et al., , 2004Wong et al., 2004;, as well as nontransgenic species (Anderson et al., 2005;Best et al., 2006;El Mouedden et al., 2006). Whereas acute treatment of old, plaque-bearing mice should have little immediate impact on plaque load (insoluble A), these inhibitors have been shown to inhibit A in CSF (Lanz et al., 2003;Barten et al., 2005) and interstitial fluid (Cirrito et al., 2003) similarly in both plaque-free and plaque-bearing mice. In addition, plasma A has been shown to be reduced similarly by ␥-secretase inhibition in both young and old Tg2576 mice (Lanz et al., 2003;Barten et al., 2005). These findings indicate that despite the presence or absence of insoluble A plaques, these compounds had similar potency in reducing soluble, secreted A in young and old transgenic mice.The ability of plasma and CSF A to track pharmacologic...